Министерство науки и высшего образования Российской Федерации

Федеральное государственное бюджетное образовательное учреждение высшего образования «Комсомольский-на-Амуре государственный университет»

СОГЛАСОВАНО

(подпись)

_О.А.Красильникова

2022 г.

Декан ФАМТ

Информационное моделирование зданий и сооружений СКБ КнАГУ

УТВЕРЖДАЮ

(подпись)

Начальник отдела ОПРО

«15 » 06 2022 г.

В.В. Солецкий

Заведующий кафедрой	
В.В.Куриный	
/ Аподпись) « <u>15</u> » <u>06</u> 20 <u>22</u> г.	
Проект «Проектирование общественного здани	ия в г. Красноярске»
Руководитель СКБ (подпись, дата)	Ю.Н. Чудинов
Руководитель проекта (подпись, дата)	Н.С. Дронов
Ответственный исполнитель	<i>И.А. Павленко</i>
(подпись, дата)	

Комсомольск-на-Амуре 2022

Карточка проекта

Название	«Разработка расчетной модели проекта	
	общественного здания с магазином и кафе в г. Красноярск»	
Тип проекта	Инициативный	
Исполнители	И.А. Павленко – 7У3-1	
Срок реализации	февраль 2022 г. – июнь 2022 г.	

Исходная информация

Исходные данные	Проектная документация реального проекта, выполненная по стандартным технологиям проектирования (двумерные чертежи)-архитектурно-строительные чертежи
Тип разрабатываемой	Архитектурная
информационной модели	
Область использования	Проектирование зданий и сооружений
Регламентирующие документы	Федеральный закон «Технический регламент о безопасности зданий и сооружений» от 30.12.2009 N 384-ФЗ (ред. от 02.07.2013) СП 20.13330.2016 Нагрузки и воздействия; СП 63.13330.2018 Бетонные и железобетонные конструкции; СП 22.13330.2016 Основания и фундаменты СП 118.13330.2012 Общественные здания и сооружения

Министерство науки и высшего образования Российской Федерации

Федеральное государственное бюджетное образовательное учреждение высшего образования «Комсомольский-на-Амуре государственный университет»

ЗАДАНИЕ на разработку

Название проекта: «Разработка расчетной модели проекта общественного здания с магазином и кафе в г. Красноярск»

Назначение:__Создание проектной документации в виде расчетной модели, согласно требованиям постановления Правительства Российской Федерации № 331 от 5 марта 2021 г. "Об установлении случая, при котором застройщиком, техническим заказчиком, лицом, обеспечивающим или осуществляющим подготовку обоснования инвестиций, и (или) лицом, ответственным за эксплуатацию объекта капитального строительства, обеспечиваются формирование и ведение информационной модели объекта капитального строительства"

Область использования: Проектирование зданий и сооружений

Типы разрабатываемых информационных моделей:

расчетная модель (ПК «САПФИР»),

расчетная модель (ПК «Лира-САПР»),

архитектурная модель (ПК «REVIT»).

Уровень детализации объекта в рамках проекта:

Разработка расчетно-конструктивного раздела для стадии П (проектирование)

Применяемые САПР

-системы:

Программа ΠK «САПФИР», ΠK «Лира-САПР», ΠK «REVIT»

Основной регламентирующий нормативный документ: <u>Федеральный закон</u> <u>«Технический регламент о безопасности зданий и сооружений» от 30.12.2009</u> <u>N 384-Ф3 (ред. от 02.07.2013)</u>

План работ:

Наименование работ			Срок	
Получение технического задания, разработка концептуальных решений				февраль-март 2022 г.
Разработка архитектурной части проекта			апрель-май 2022 г.	
Расчет основных конструкций здания с разработкой рабочей документации			июнь 2022 г.	

TC -	
Коммента	пии:
T COLITICA TEN	P

Перечень графического материала:

План первого этажа на отм. 0.000;	План второго этажа на отм. 3.60
Разрез 1-1; Разрез 2-2; Фасад 1-6; Фас	сад А-Г; Фасад 6-1; Фасад Г-А, 3D в
модели	
Руководитель СКБ (подпись,	дата Ю.Н. Чудинов
Руководитель проекта (подпись,	дата)
Исполнитель проекта	И.А. Павленко

(подпись, дата

СОДЕРЖАНИЕ

ВВЕДЕНИЕ	7
1 Общие данные	8
2 Конструктивные решения задачи, включая пространственные	схемы,
принятые при выполнении расчетов конструкций	8
3 Материалы несущих конструкций	9
4 Нагрузки и воздействия	9
4.1 Сбор нагрузок	9
4.2 Снеговая нагрузка	10
4.3 Ветровая нагрузка	11
4.4 Эксплуатационная нагрузка	11
5 Описание грунтового основания	12
6 Описание расчетной схемы	14
7 Загружения	15
8 Результаты статического расчета	19
8.1 Максимальные значения напряжений	19
8.2 Минимальные значения напряжений	22
9 Максимальные значения напряжений в межэтажном перекрытии	25
10 Минимальные значения напряжений в межэтажном перекрытии	28
11 Результаты конструктивного расчета межэтажного перекрытия	31
12 Максимальные значения напряжений в верхнем перекрытии	33
13 Минимальные значения напряжений в верхнем перекрытии	36
14 Результаты конструктивного расчета верхнего перекрытия	39
15 Максимальные значения напряжений в плите первого этажа	41
16 Минимальные значения напряжений в плите первого этажа	44
17 Результаты конструктивного расчета плиты первого этажа	47
18 Максимальные значения напряжений в фундаментной плите	49
19 Минимальные значения напряжений в фундаментной плите	52

20 Результаты конструктивного расчета фундаментной плиты	55
21 Осадка фундамента и здания	57
22 Усилия в колоннах	58
23 Результаты конструктивного расчета колонн	61
24 Усилия в балках	62
25 Результаты конструктивного расчета балок	64

ВВЕДЕНИЕ

Конструктивные и объемно-планировочные решения – неотъемлемая часть проекта здания (сооружения), направленная на реализацию архитектурных замыслов.

Данный раздел определяет характеристики основных несущих конструкций, в соответствии с их назначением назначение, которые должны обеспечивать прочность, устойчивость и долговечность строения. Так же раздел содержит необходимые расчёты в специальных программных комплексах с учётом действующих нагрузок.

1 Общие данные

В разделе разрабатывается конструктивная схема проектируемого здания и документация марки «КР». Выполнены соответствующие расчеты.

Раздел разработан в соответствии с:

- СП 20.13330.2016 Нагрузки и воздействия;
- СП 63.13330.2018 Бетонные и железобетонные конструкции;
- СП 16.13330.2017 Стальные конструкции.

А также по специализированным СП:

- СП 118.13330.2012 Общественные здания и сооружения.

2 Конструктивные решения задачи, включая пространственные схемы, принятые при выполнении расчетов конструкций

Здание в плане имеет форму прямоугольника высотой 2 этажа.

Габаритные размеры здания 26,64 м. в продольном направлении, 18,64 м. в поперечном направлении. В осях 1-6 26 м, в осях А- Γ 18 м. Высота этажа - 3,6 м.

Количество этажей - 2.

Уровень ответственности по ГОСТ 27751-2014 - КС-2.

Степень огнестойкости здания – III.

Класс конструктивной пожарной опасности – С0.

Класс функциональной пожарной опасности – Ф3.1(магазин на первом этаже) и Ф3.2 (кафе на втором этаже).

Здание представляет собой ж/б каркас из колонн и балок, с двумя лестничными маршами. Наружные стеновые ограждения выполнены из сэндвич-панелей толщиной 120 мм. Внутренние стены выполнены из кирпича толщиной 120 мм.

Горизонтальные диски жесткости представлены плитами перекрытия толщиной 160 мм.

Фундаменты:

под техподпольем – монолитный железобетонный из бетона B20 ГОСТ 26633-91;

под стены для лестничных клеток — сборные, ленточные из сборных железобетонных блоков толщиной 400 мм;

под ЖБ колонны – монолитные железобетонные, стаканного типа из бетона B25 ГОСТ 26633-91.

Стены техподполья – фундаментные блоки толщиной 600 мм по ГОСТ13579-78.

Кровля – сэндвич-панели толщиной 150 мм, устроенные по деревянным лагам.

Лестничные марши – сборные железобетонные индивидуального изготовления.

3 Материалы несущих конструкций

Материалы основных несущих конструкций:

- бетон класса В20 плиты перекрытия, балки (ГОСТ 25192-2012);
- бетон класса B25 вертикальные несущие элементы (ГОСТ 25192-2012);
 - арматура класса А400С ГОСТ Р 52544-2006.

4 Нагрузки и воздействия

4.1 Сбор нагрузок

Таблица 1 – Сбор нагрузок

№	Вид нагрузки	Нормативная нагрузка, кг/м ²	Коэффициент надежности по нагрузке	Расчетная нагрузка, кг/м ²
1		Пол		
	Лаги $50x100$ (усред на 1 $\text{м}^2 = 7 \text{ кг}$)	7*0,1=0,7	1,1	0,77
	Паркетная доска δ =14 мм (27 кг м ²)	27*0,14=3,78	1,1	4,16
	Стяжка $\delta = 20$ мм (1800 кг/м ³)	1800*0,02=36	1,3	46,8
			Итого	51,73

Продолжение таблицы 1

2	Внутренние стены				
	Штукатурка $\delta = 10$ мм (1600 кг/м^3)	1600*0,01=16	1,3	20,8	
	Керамическая плитка δ =5 мм (2050 кг/м ³)	2050*0,005=10,25	1,2	12,3	
		33,1			
3	Кровля				
	Брус $100x250$ (усред на 1 $\text{м}^2 = 18 \text{ кг}$)	18*0,25=4,5	1,1	4,95	
	Доска $50x100$ (усред на 1 $\text{м}^2 = 7 \text{ кг}$)	7*0,1=0,7	1,1	0,77	
	Обрешетка $200x25$ (усред на $1 \text{ м}^2 = 7 \text{ кг}$)	7*0,025=0,18	1,1	0,2	
	Сэндвич-панель $\delta = 180$ мм (35,8 кг/м ³)	35,8*0,18=6,44	1,1	7,08	
			Итого	13	

4.2 Снеговая нагрузка

Нормативное значение снеговой нагрузки на горизонтальную проекцию покрытия следует определять по формуле

$$S_0 = c_e c_t \mu S_g,$$

где c_e - коэффициент, учитывающий снос снега с покрытий зданий под действием ветра или иных факторов;

 c_t - термический коэффициент, c_t = 1;

 μ - коэффициент формы, учитывающий переход от веса снегового покрова земли к снеговой нагрузке на покрытие, $\mu=1$;

 S_g - нормативное значение веса снегового покрова на 1 м горизонтальной поверхности земли.

Снеговой район г. Красноярск - III. $S_g = 1.5 \text{ кH/м}^2$.

$$c_e = (1.4 - 0.4\sqrt{k})(0.8 + 0.002l_c),$$

где k- коэффициент, для типов местности. k = 1,4;

 $l_c = 2b - \frac{b^2}{l}$ - характерный размер покрытия, принимаемый не более 100 м;

b - наибольший размер покрытия в плане;

l - наибольший размер покрытия в плане.

$$l_c = 2 \cdot 18,64 - \frac{18,64^2}{26,64} = 24,24,$$
 $c_e = 0,79,$ $S_0 = 1500 \cdot 0,79 = 1185 \text{ H/m}^2.$

Расчетная снеговая нагрузка определяется

$$S_n = S_0 \cdot k$$
,

где k - коэффициент надежности по нагрузке, k=1,4.

$$S_n = 118,5 \cdot 1,4 = 165,9 \text{ кг/м}^2.$$

4.3 Ветровая нагрузка

Нормативное значение ветрового давления принимается в зависимости от ветрового района.

Ветровой район г. Красноярск III. $w_0 = 0.38$ кПа.

4.4 Эксплуатационная нагрузка

Нормативные и расчетные значения равномерно распределённых кратковременных нагрузок следует принимать согласно СП 20.13330.2016.

Таблица 2 – Нормативные и расчетные значения нагрузок

Ŋ <u>o</u>	Помещение	Нормативные	Коэффициент	Расчетные значения
	здания	значения равномерно	надежности по	равномерно
		распределенных	нагрузке, ү _f	распределенных
		нагрузок Р, кПа		нагрузок Р, кПа
		Первый э	таж	
1	Лестничная	4	1,2	4,8
	клетка	4	1,2	4,8
2	Магазин	4	1,2	4,8
3	Кабинет	2	1,2	2,4
4	Кухня	2	1,2	2,4
5	Лестничная	3	1,2	3,6
	клетка	3		3,0
6	Кладовая	2	1,2	2,4
7	Зал собраний	4	1,2	4,8
8	Электрощитовая	2	1,2	2,4
9	Коридор	3	1,2	3,6
10	Гардеробная	2	1,2	2,4

Продолжение таблицы 2

11	Склад	5	1,2	6
12	Офис	2	1,2	2,4
13	Уборная	2	1,2	2,4
14	Душевая	2	1,2	2,4
15	Умывальня	2	1,2	2,4
16	Пост охраны	2	1,2	2,4
		Второй эт	гаж	
17	Лестничная клетка	4	1,2	4,8
18	Кафе	3	1,2	3,6
19	Кабинет	3	1,2	3,6
20	Санузел	2	1,2	2,4
21	Лестничная клетка	3	1,2	3,6
22	Кухня	2	1,2	2,4
23	Коридор	2	1,2	2,4
24	Тамбур	2	1,2	2,4
25	Умывальня	2	1,2	2,4
26	Санузел	2	1,2	2,4
27	Кладовая	2	1,2	2,4
28	Офис	2	1,2	2,4
29	Холл	2	1,2	2,4

5 Описание грунтового основания

На основании визуального описания, лабораторных анализов и статистической обработки частных значений показателей физикомеханических свойств в пределах изученной территории выделено 4 инженерно-геологических элемента грунта.

ИГЭ 1 — Техногенный: неоднородный суглинок, гравий, галька со строительным и бытовым мусором. На момент изысканий находился в сезонно-мёрзлом состоянии. Не опробован. Нормативное значение плотности грунта принято по ГЭСН 2001 − 1,75 г/см3.

ИГЭ 2 — Почвенно-растительный слой. На момент изысканий находился в сезонно-мёрзлом состоянии. Не опробован. Нормативное значение плотности грунта принято по ГЭСН 2001 — 1,20 г/см3.

ИГЭ 3 – Суглинок лёгкий твёрдый.

Нормативные значения физических характеристик получены по 5 пробам ненарушенного сложения и составляют: естественная влажность – 19,2 %, плотность грунта – 1,82 г/см3, коэффициент пористости – 0,74.

Нормативные значения прочностных и деформационной характеристик получены с использованием рекомендуемых приложений СП 22.13330.2016: модуль деформации — 17,5 МПа, удельное сцепление — 25,6 кПа, угол внутреннего трения — 23,1.

ИГЭ 4 – Галечниковый грунт с заполнителем супесью твёрдой, плотный, маловлажный.

Нормативные значения физических характеристик получены по 4 пробам ненарушенного и 7 пробам нарушенного сложения и составляют: естественная влажность – 7,6 %, плотность грунта – 2,26 г/см3, коэффициент пористости – 0,30.

Нормативные значения получены расчетом по Методике ДальНИИС по нормативным значениям физических характеристик с учетом прочности и окатанности обломочного материала и составляют: модуль деформации — 46,2 МПа, удельное сцепление — 18,3 кПа, угол внутреннего трения — 32,4.

6 Описание расчетной схемы

Расчет производится в ПК Лира-САПР.

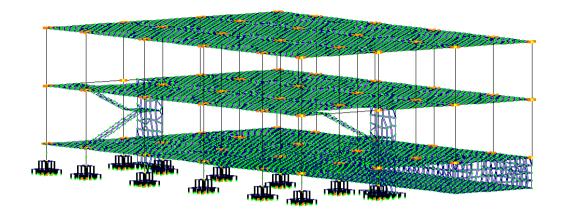


Рисунок 1 – Общий вид расчетной модели здания

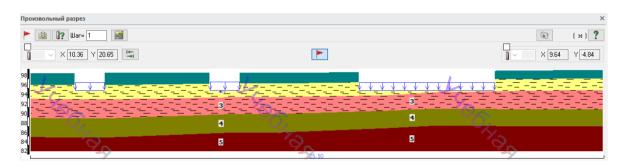


Рисунок 2 – Посадка здания на грунт

7 Загружения

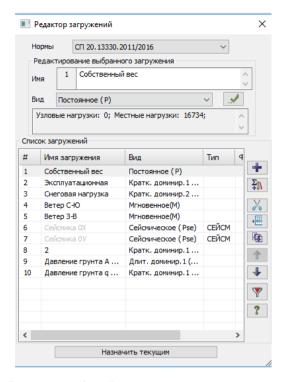


Рисунок 3 – Редактор загружений

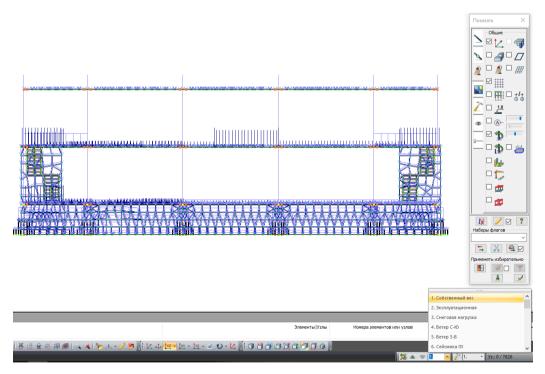


Рисунок 4 – Собственный вес

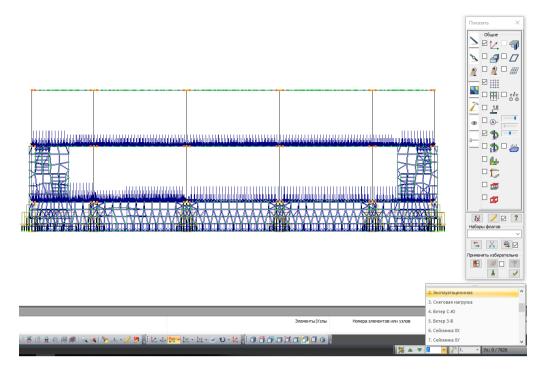


Рисунок 5 – Эксплуатационная нагрузка

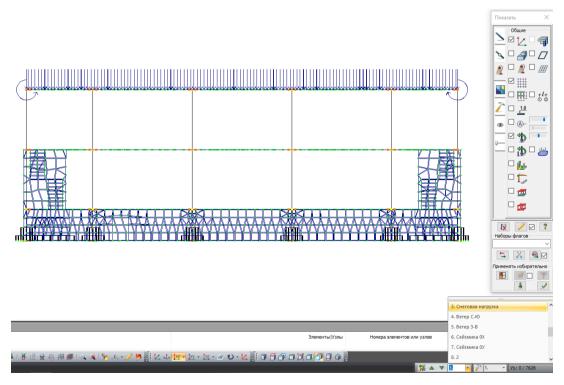


Рисунок 6 – Снеговая нагрузка

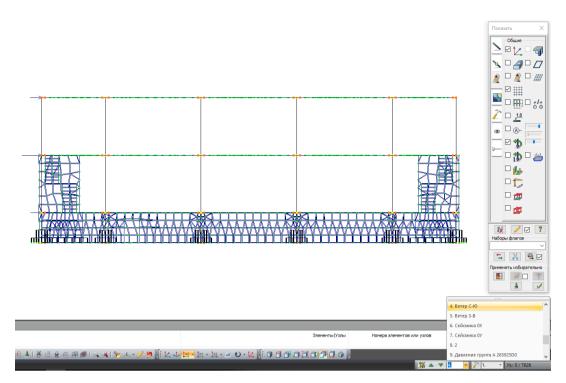


Рисунок 7 – Ветер Ю-С

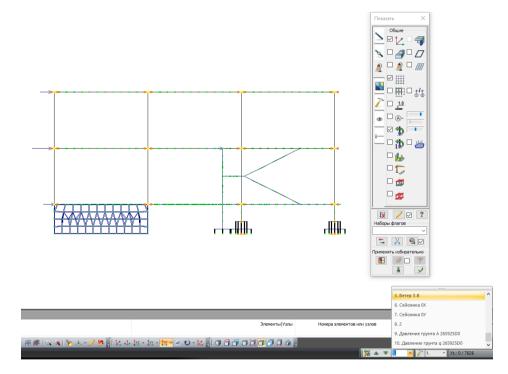


Рисунок 8 – Ветер 3-В

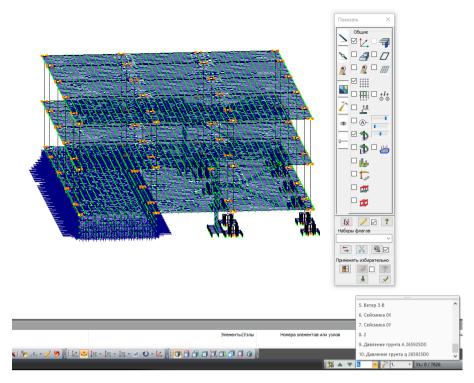


Рисунок 9 – Давление грунта А

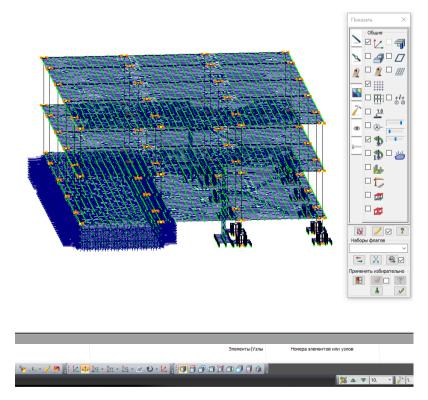


Рисунок 10 – Давление грунта q

8 Результаты статического расчета

На основании выполненного статического расчета, были получены огибающие максимальных и минимальных значений усилий.

8.1 Максимальные значения напряжений

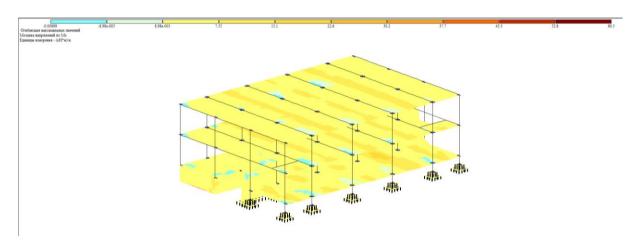


Рисунок 11 – Мозаика напряжений по М_х

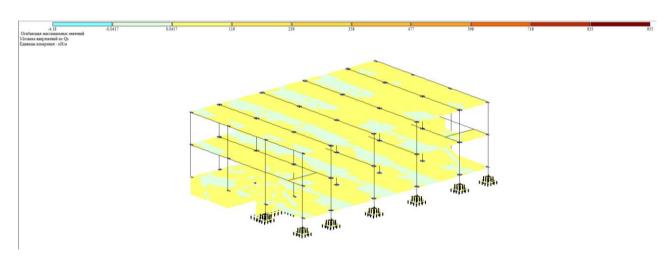


Рисунок 12 – Мозаика напряжений по Q_x

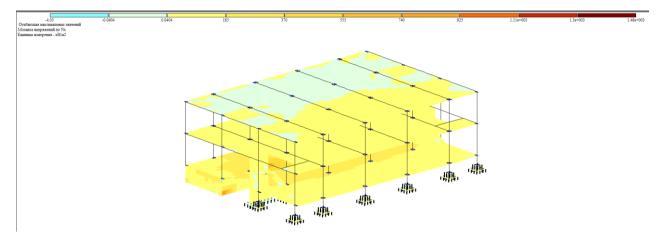


Рисунок 13 — Мозаика напряжений по $N_{\rm x}$

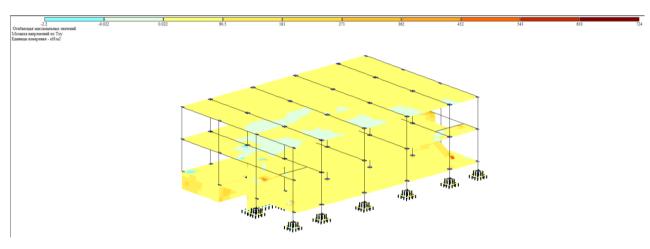


Рисунок 14 — Мозаика напряжений по τ_{xy}

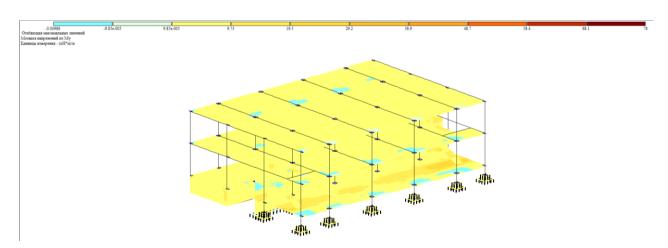


Рисунок 15 — Мозаика напряжений по $M_{\rm y}$

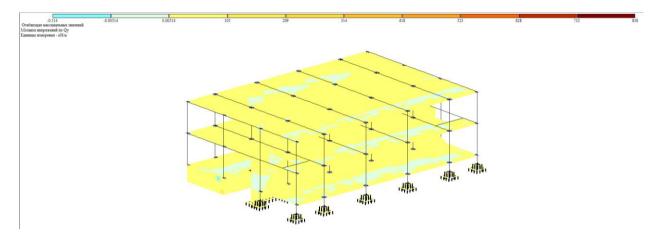


Рисунок $16 - Мозаика напряжений по <math>Q_y$

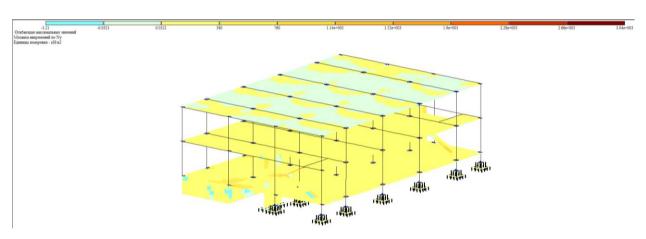


Рисунок 17 — Мозаика напряжений по $N_{\rm y}$

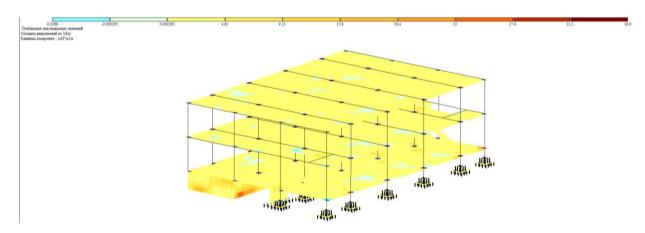


Рисунок 18 — Мозаика напряжений по M_{xy}

8.2 Минимальные значения напряжений

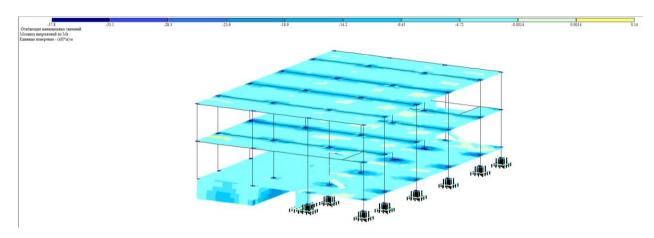


Рисунок 19 – Мозаика напряжений по M_x

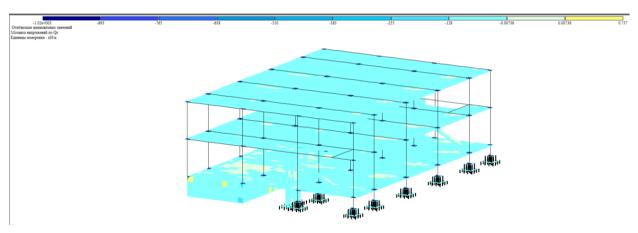


Рисунок 20 – Мозаика напряжений по Q_x

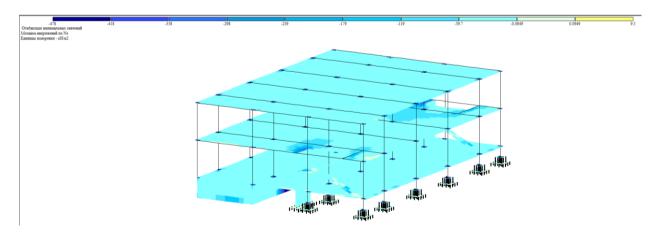


Рисунок 21 — Мозаика напряжений по $N_{\rm x}$

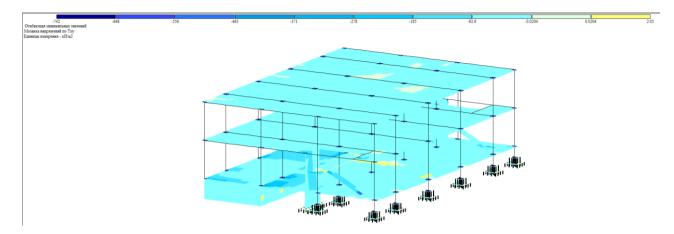


Рисунок 22- Мозаика напряжений по τ_{xy}

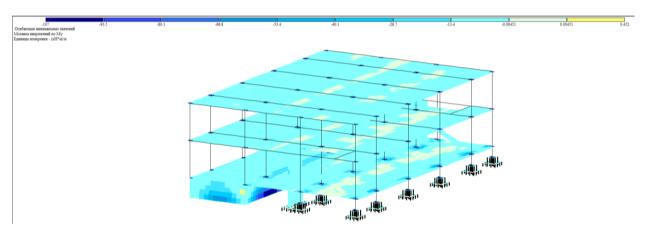


Рисунок 23 — Мозаика напряжений по M_y

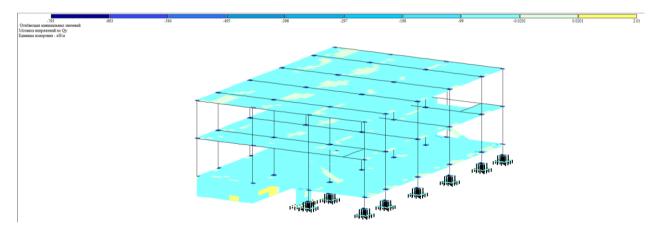


Рисунок $24 - Мозаика напряжений по <math>Q_y$

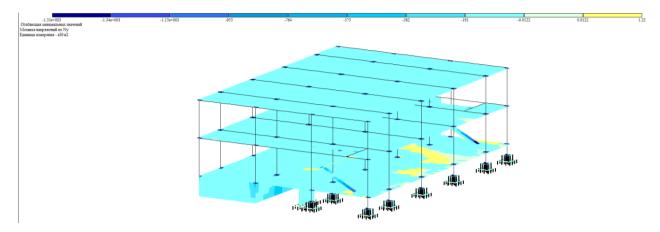


Рисунок 25 -Мозаика напряжений по N_y

Рисунок 26 — Мозаика напряжений по M_{xy}

9 Максимальные значения напряжений в межэтажном перекрытии

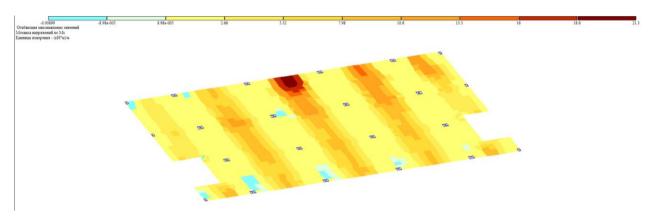


Рисунок 27 — Мозаика напряжений по M_x

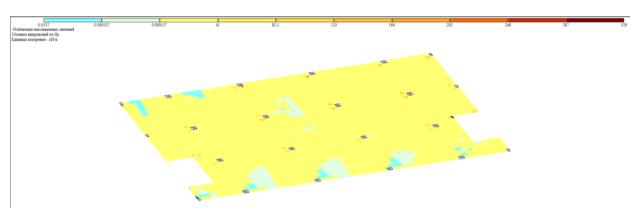


Рисунок 28 – Мозаика напряжений по Q_x

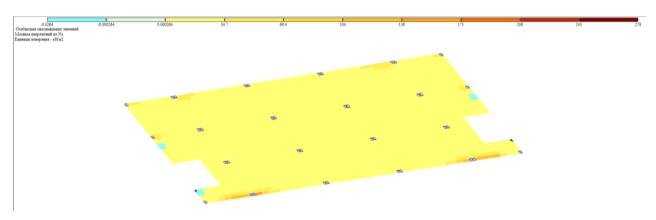


Рисунок 29 — Мозаика напряжений по $N_{\rm x}$

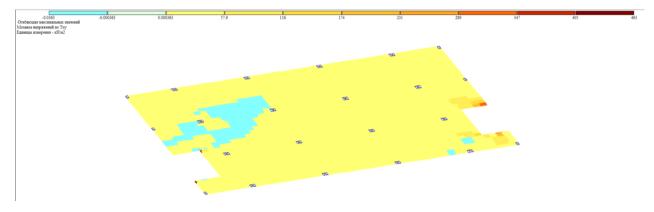


Рисунок 30 — Мозаика напряжений по τ_{xy}



Рисунок 31 – Мозаика напряжений по M_y

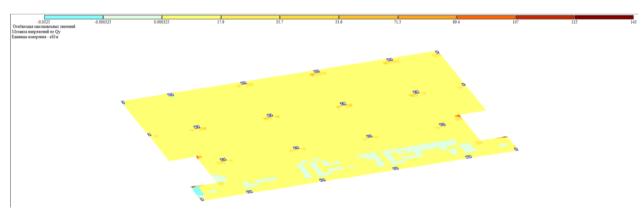


Рисунок $32 - Мозаика напряжений по <math>Q_y$

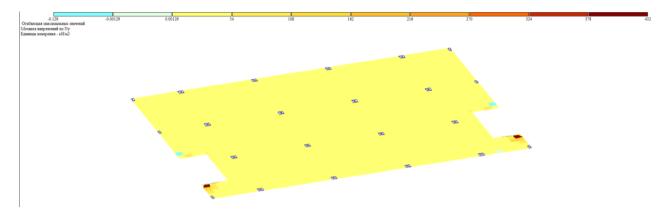


Рисунок 33 — Мозаика напряжений по N_y

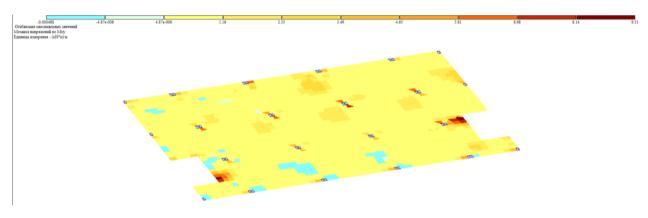


Рисунок 34 — Мозаика напряжений по $M_{\rm xy}$

10 Минимальные значения напряжений в межэтажном перекрытии

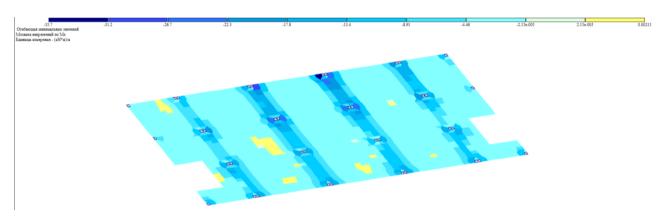


Рисунок 35 – Мозаика напряжений по M_x

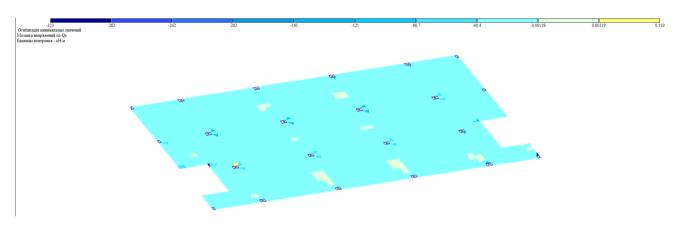


Рисунок 36 – Мозаика напряжений по Q_x

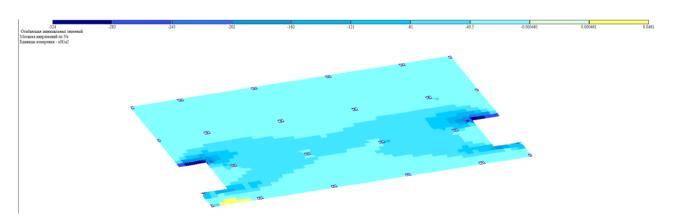


Рисунок 37 — Мозаика напряжений по N_{x}

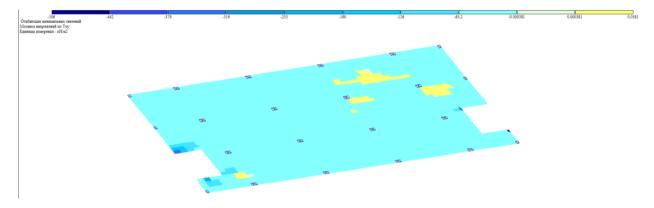


Рисунок 38 – Мозаика напряжений по τ_{xy}

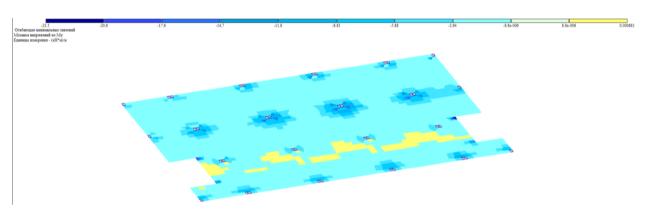


Рисунок 39 — Мозаика напряжений по $M_{\rm y}$

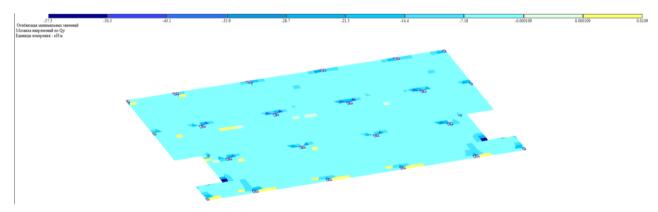


Рисунок 40 — Мозаика напряжений по Q_y

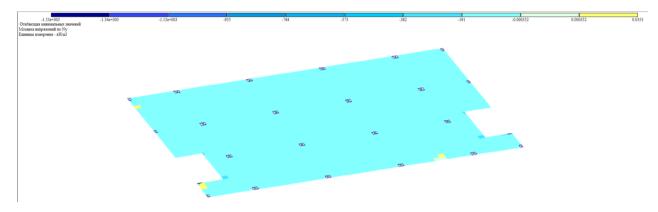


Рисунок 41 — Мозаика напряжений по N_y

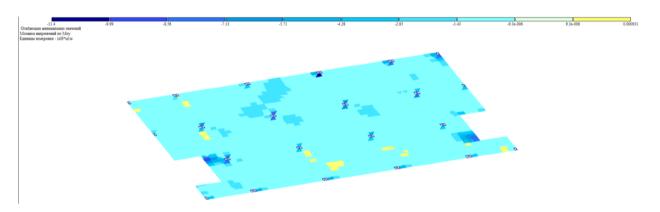


Рисунок 42 – Мозаика напряжений по M_{ху}

11 Результаты конструктивного расчета межэтажного перекрытия

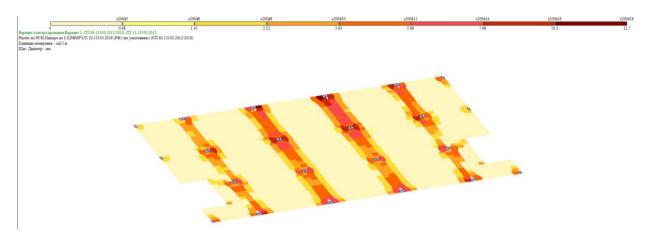


Рисунок 43 – Схема армирования верха плиты по оси OX

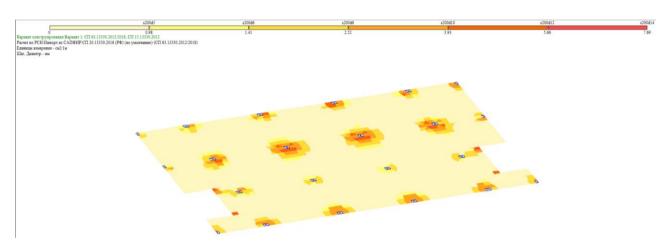


Рисунок 44 – Схема армирования верха плиты по оси ОУ

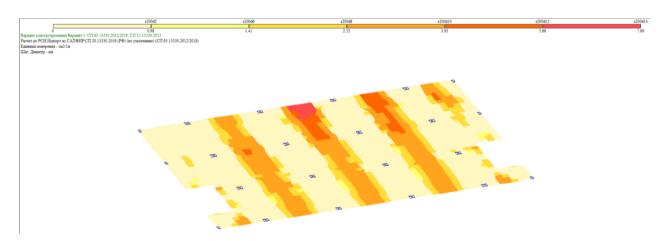


Рисунок 45 – Схема армирования низа плиты по оси OX

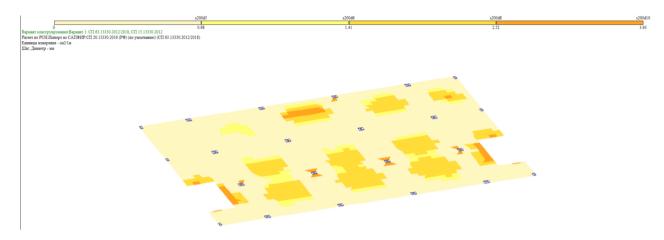


Рисунок 46 – Схема армирования низа плиты по оси ОУ

Вывод: для обеспечения необходимой и достаточной прочности при строительстве принимаем верхнюю продольную арматуру d18 A400 с шагом 200 мм, и верхнюю поперечную арматуру d14 A400 с шагом 200 мм. Нижнюю продольную арматуру принимаем d14 A400 с шагом 200мм, и нижнюю поперечную d10 A400 с шагом 200мм. Величина приопорного участка равна 1,5 м, в зоне которой подобранная арматура устанавливается с шагом 100 мм.

12 Максимальные значения напряжений в верхнем перекрытии

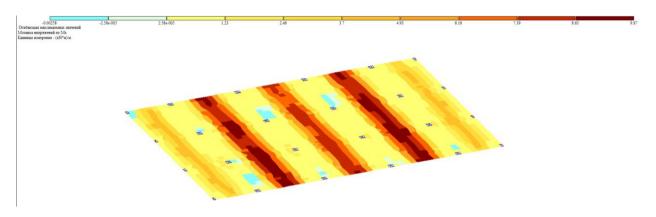


Рисунок 47 — Мозаика напряжений по M_x

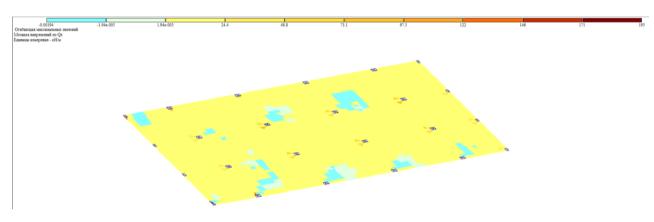


Рисунок 48 – Мозаика напряжений по Q_x

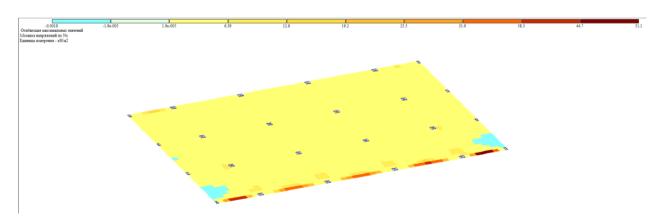


Рисунок 49 — Мозаика напряжений по $N_{\rm x}$

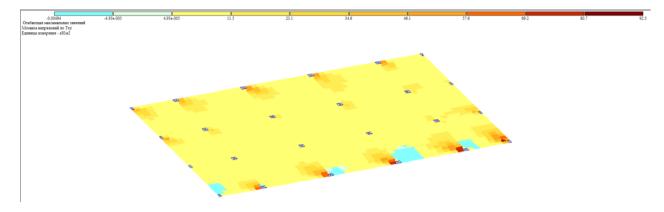


Рисунок 50 – Мозаика напряжений по τ_{xy}

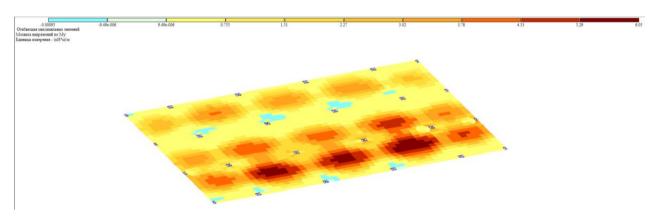


Рисунок 51 — Мозаика напряжений по M_y

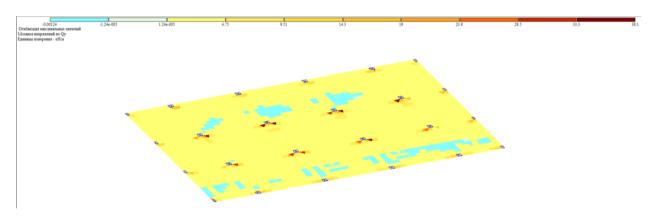


Рисунок 52 — Мозаика напряжений по Q_y

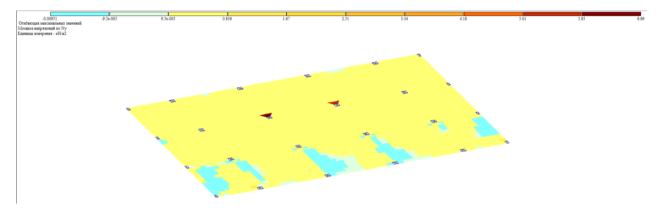


Рисунок 53 — Мозаика напряжений по $N_{\rm y}$

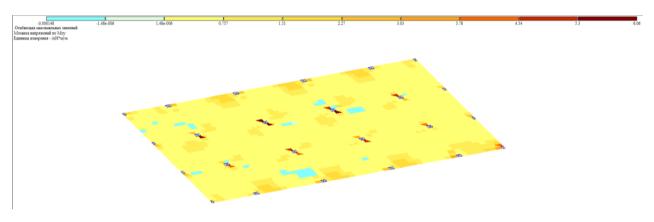


Рисунок $54 - Мозаика напряжений по <math>M_{xy}$

13 Минимальные значения напряжений в верхнем перекрытии

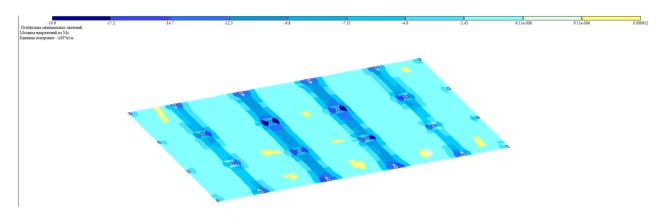


Рисунок 55 – Мозаика напряжений по M_x

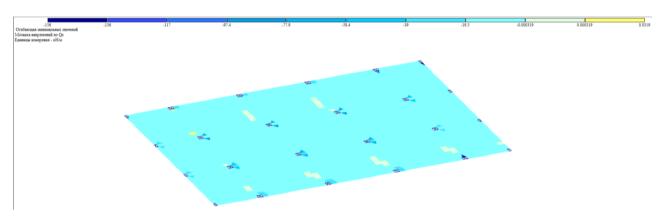


Рисунок 56 — Мозаика напряжений по Q_x

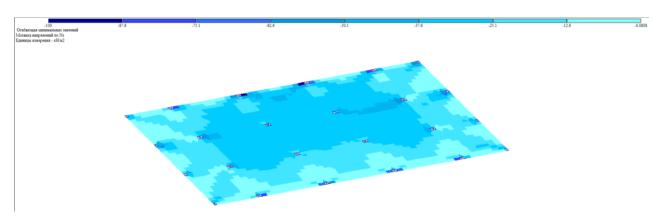


Рисунок 57 — Мозаика напряжений по $N_{\rm x}$

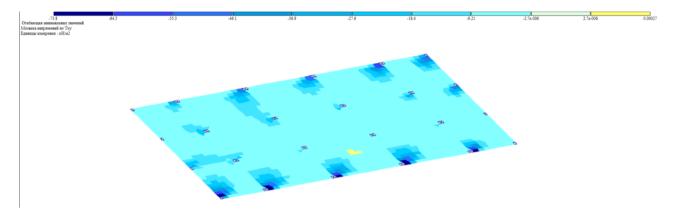


Рисунок 58- Мозаика напряжений по τ_{xy}

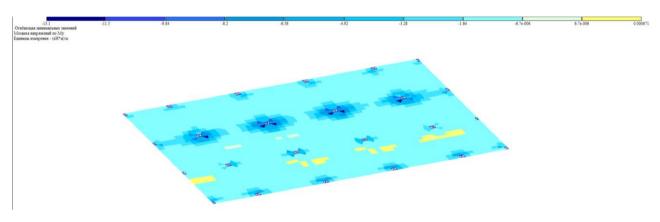


Рисунок 59 – Мозаика напряжений по M_y

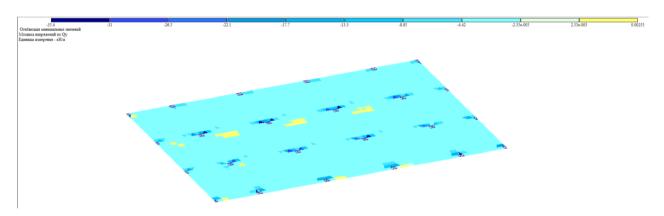


Рисунок 60 — Мозаика напряжений по Q_y

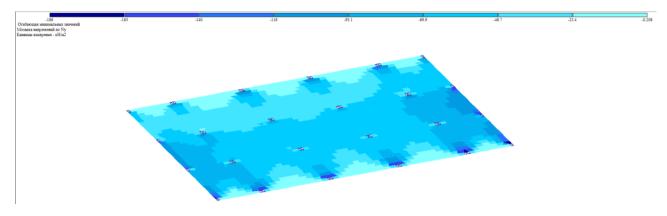


Рисунок 61 — Мозаика напряжений по $N_{\rm y}$

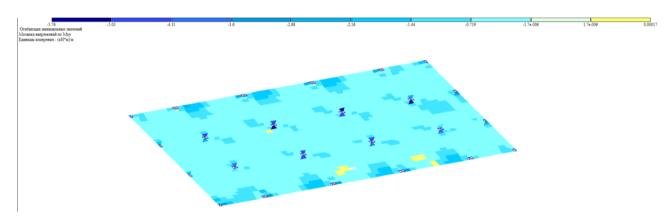


Рисунок 62 – Мозаика напряжений по $M_{\rm xy}$

14 Результаты конструктивного расчета верхнего перекрытия

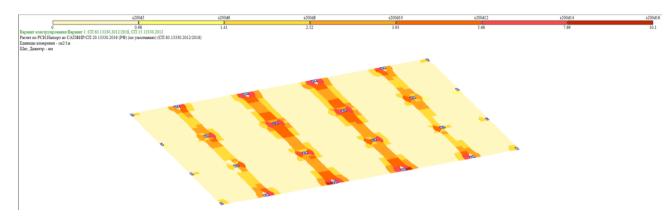


Рисунок 63 – Схема армирования верха плиты по оси OX

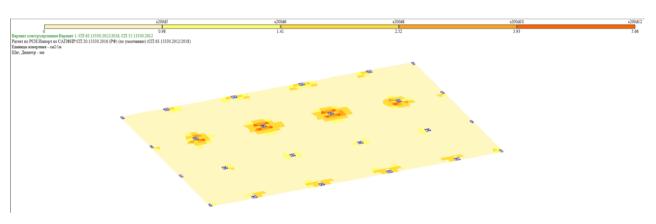


Рисунок 64 – Схема армирования верха плиты по оси ОУ

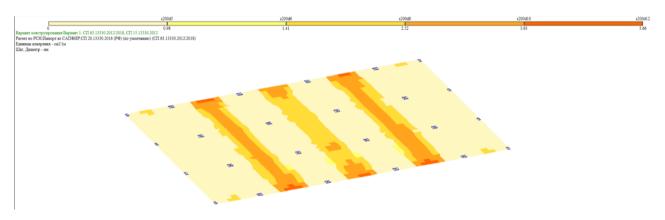


Рисунок 65 – Схема армирования низа плиты по оси OX

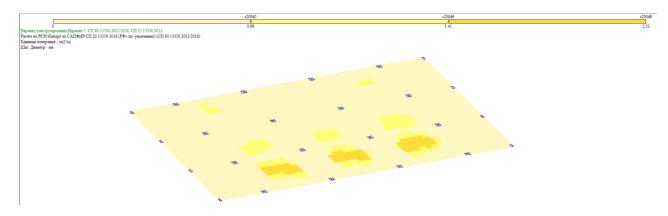


Рисунок 66 – Схема армирования низа плиты по оси ОУ

Вывод: для обеспечения необходимой и достаточной прочности при строительстве принимаем верхнюю продольную арматуру d16 A400 с шагом 200 мм, и верхнюю поперечную арматуру d12 A400 с шагом 200 мм. Нижнюю продольную арматуру принимаем d12 A400 с шагом 200мм, и нижнюю поперечную d18 A400 с шагом 200мм. Величина приопорного участка равна 1,5 м, в зоне которой подобранная арматура устанавливается с шагом 100 мм.

15 Максимальные значения напряжений в плите первого этажа

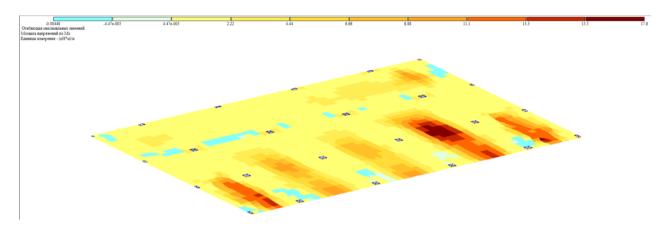


Рисунок 67 – Мозаика напряжений по M_x

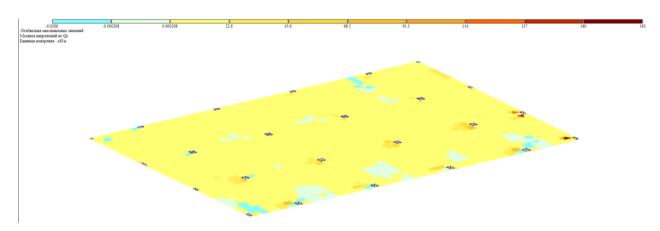


Рисунок 68 — Мозаика напряжений по Q_x

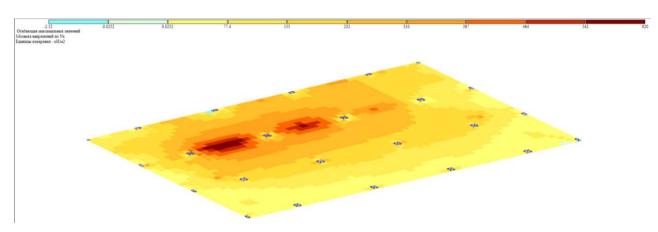


Рисунок 69 — Мозаика напряжений по $N_{\rm x}$

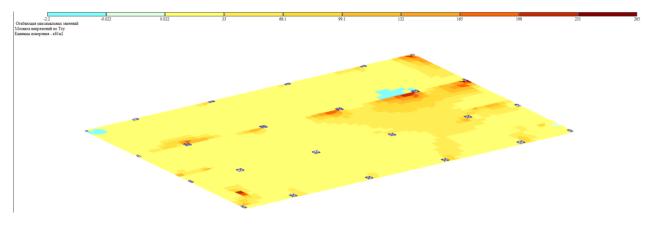


Рисунок 70 – Мозаика напряжений по τ_{xy}

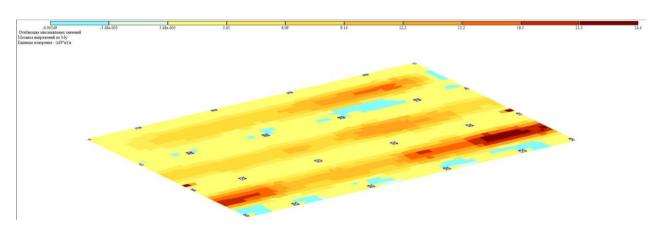


Рисунок 71 – Мозаика напряжений по M_у

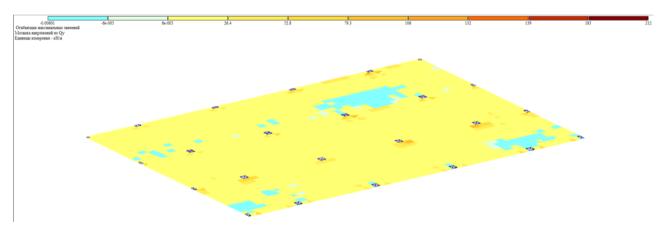


Рисунок 72 — Мозаика напряжений по Q_y

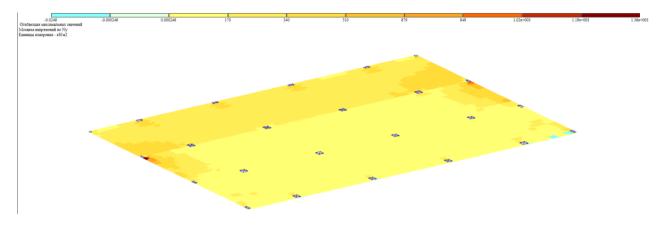


Рисунок 73 — Мозаика напряжений по N_y

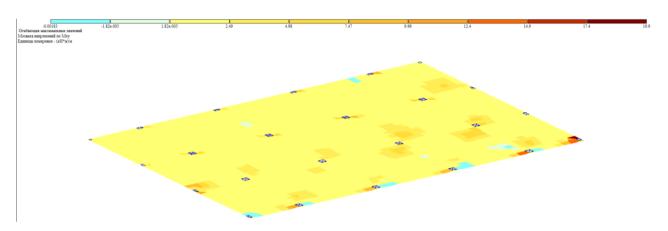


Рисунок 74 — Мозаика напряжений по M_{xy}

16 Минимальные значения напряжений в плите первого этажа

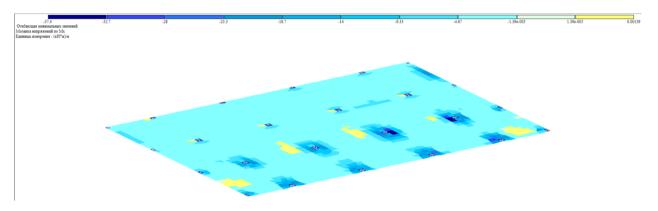


Рисунок 75 — Мозаика напряжений по M_x

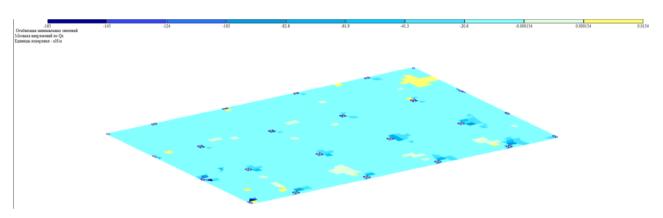


Рисунок 76 – Мозаика напряжений по Q_x

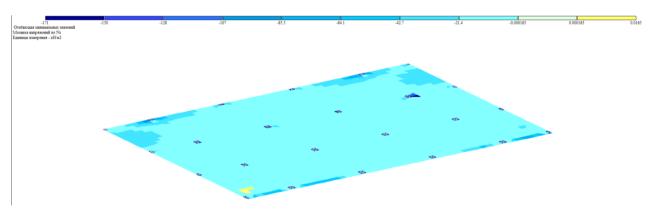


Рисунок 77 — Мозаика напряжений по N_x

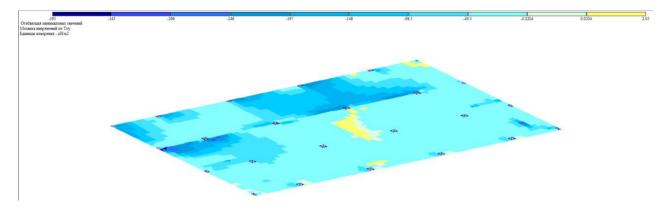


Рисунок 78 – Мозаика напряжений по τ_{xy}

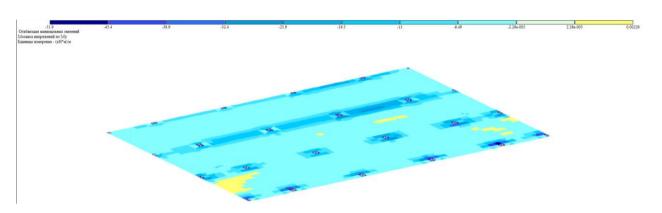


Рисунок 79 — Мозаика напряжений по $M_{\rm y}$

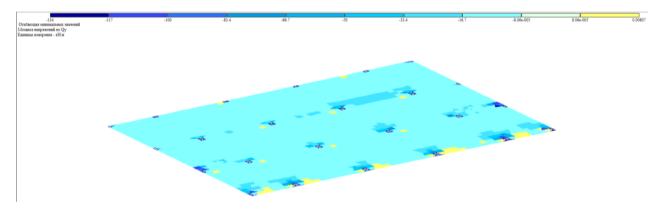


Рисунок 80 — Мозаика напряжений по Q_y

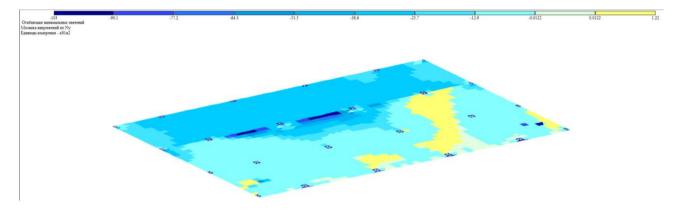


Рисунок 81 – Мозаика напряжений по N_y

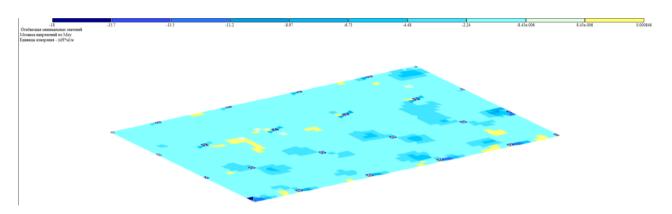


Рисунок 82 — Мозаика напряжений по M_{xy}

17 Результаты конструктивного расчета плиты первого этажа

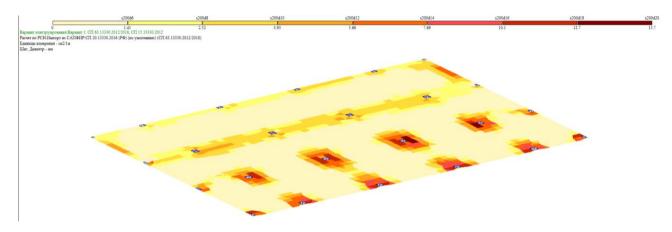


Рисунок 83 – Схема армирования верха плиты по оси OX

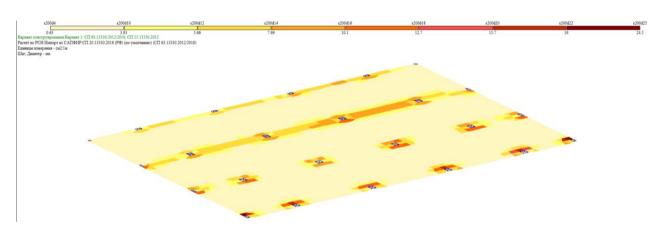


Рисунок 84 – Схема армирования верха плиты по оси ОУ

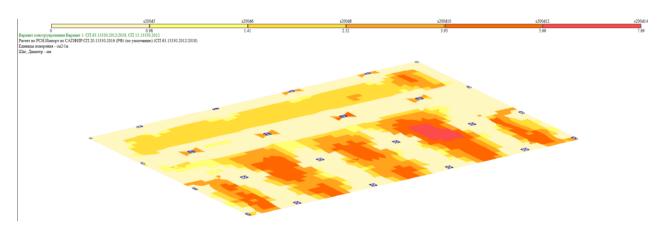


Рисунок 85 – Схема армирования низа плиты по оси OX



Рисунок 86 – Схема армирования низа плиты по оси ОУ

Вывод: для обеспечения необходимой и достаточной прочности при строительстве принимаем верхнюю продольную арматуру d20 A400 с шагом 200 мм, и верхнюю поперечную арматуру d25 A400 с шагом 200 мм. Нижнюю продольную арматуру принимаем d14 A400 с шагом 200мм, и нижнюю поперечную d16 A400 с шагом 200мм. Величина приопорного участка равна 1,5 м, в зоне которой подобранная арматура устанавливается с шагом 100 мм.

18 Максимальные значения напряжений в фундаментной плите

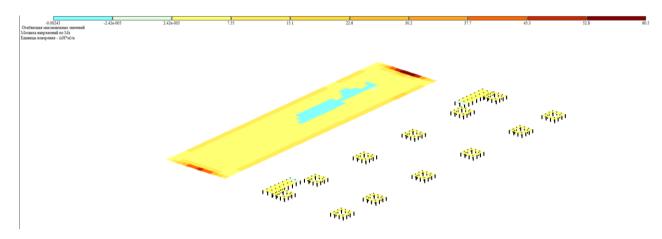


Рисунок 87 – Мозаика напряжений по M_x

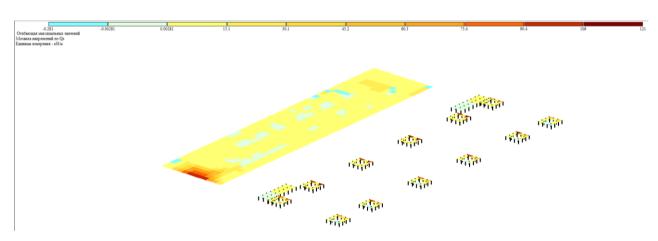


Рисунок 88 – Мозаика напряжений по Q_x

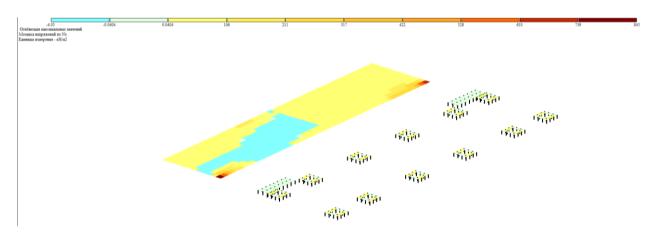


Рисунок 89 — Мозаика напряжений по $N_{\rm x}$

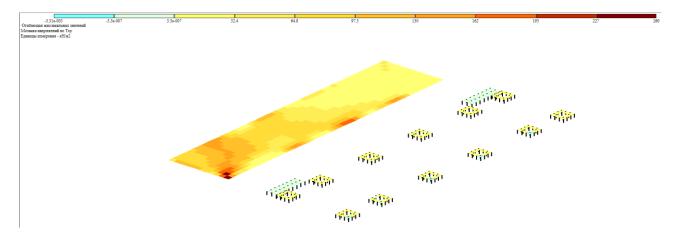


Рисунок 90 – Мозаика напряжений по τ_{xy}

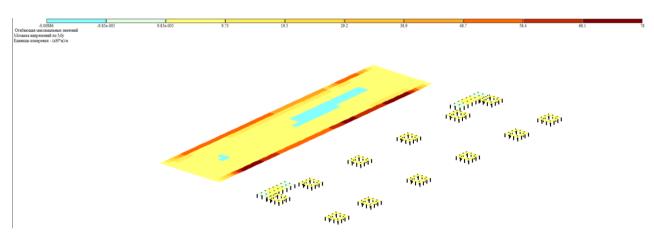


Рисунок 91 — Мозаика напряжений по $M_{\rm y}$

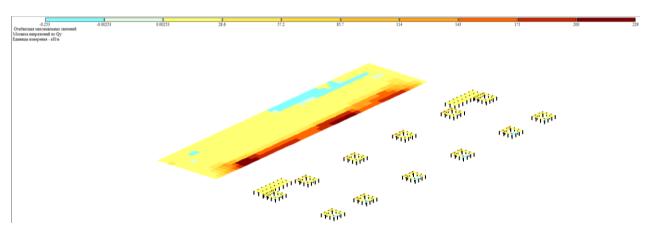


Рисунок 92 – Мозаика напряжений по Q_у

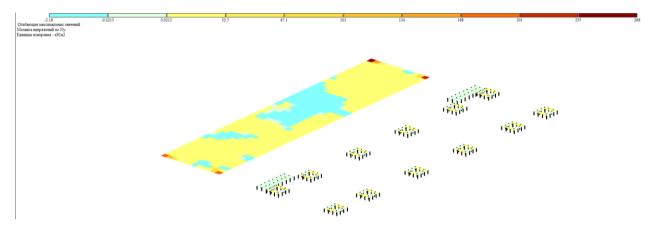


Рисунок 93 — Мозаика напряжений по N_y

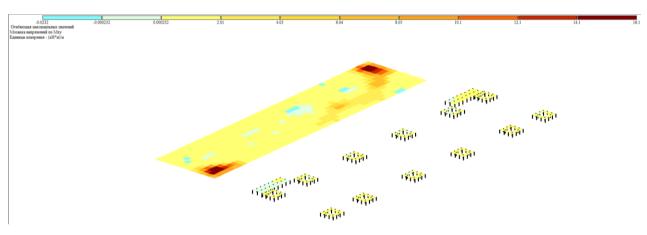


Рисунок 94 – Мозаика напряжений по М_{ху}

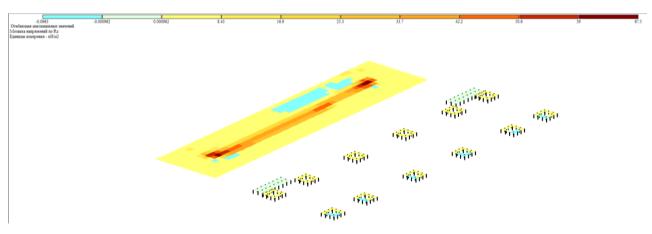


Рисунок 95 — Мозаика напряжений по $R_{\rm z}$

19 Минимальные значения напряжений в фундаментной плите

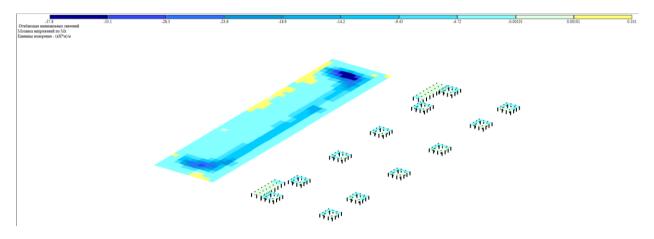


Рисунок 96 – Мозаика напряжений по M_x

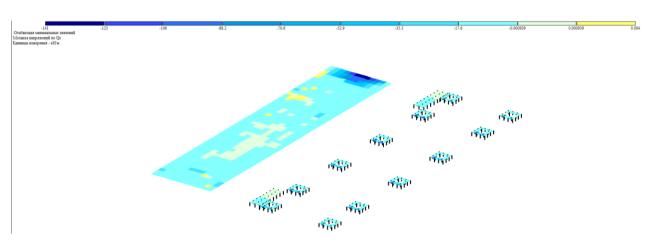


Рисунок 97 – Мозаика напряжений по Q_x

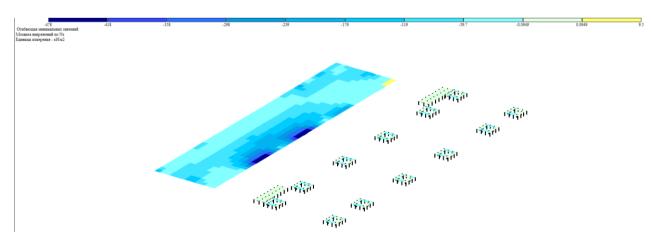


Рисунок 98 — Мозаика напряжений по N_x

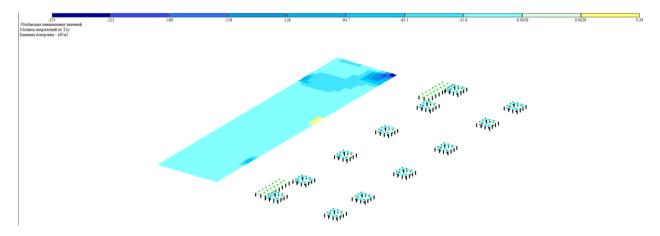


Рисунок 99 — Мозаика напряжений по τ_{xy}

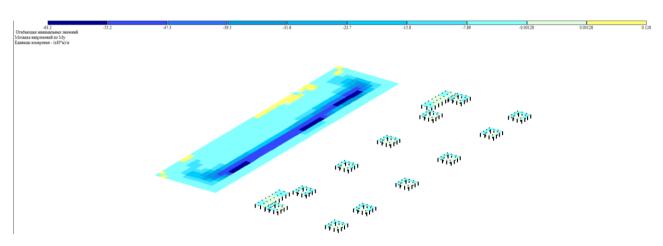


Рисунок 100 – Мозаика напряжений по M_y

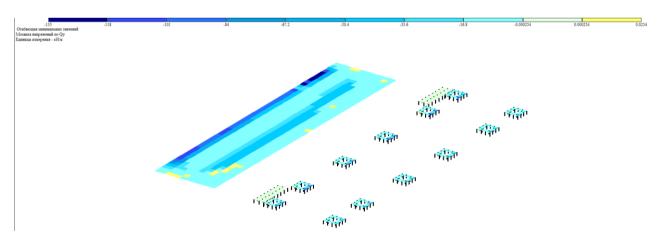


Рисунок $101 - Мозаика напряжений по <math>Q_y$

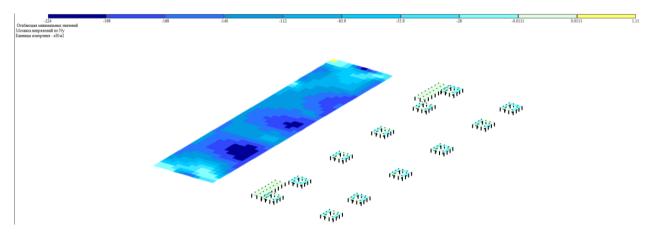


Рисунок 102 — Мозаика напряжений по N_y

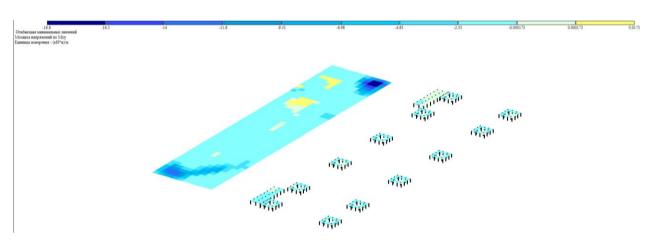


Рисунок $103 - Мозаика напряжений по <math>M_{xy}$

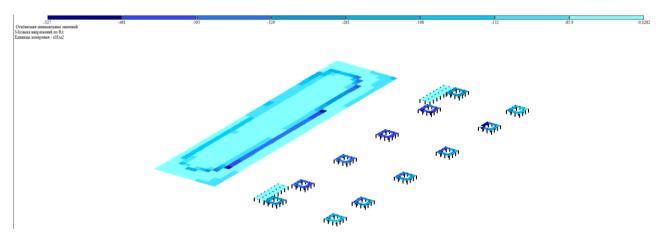


Рисунок 104 — Мозаика напряжений по $R_{\rm z}$

20 Результаты конструктивного расчета фундаментной плиты

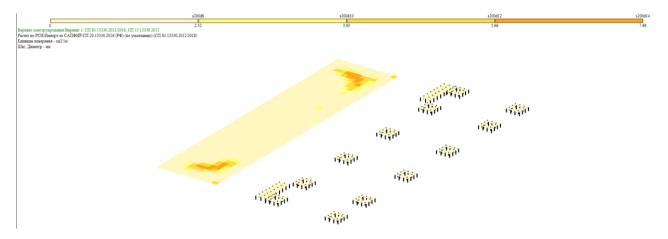


Рисунок 105 – Схема армирования верха плиты по оси ОХ

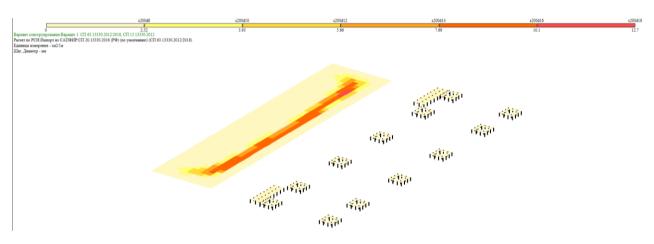


Рисунок 106 – Схема армирования верха плиты по оси ОУ

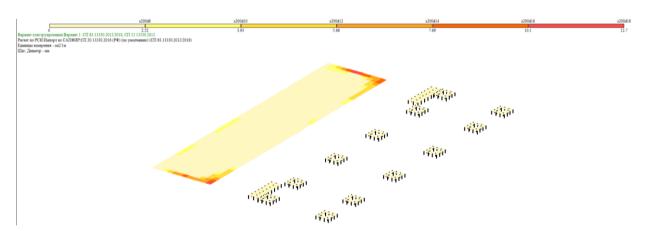


Рисунок 107 – Схема армирования низа плиты по оси ОХ

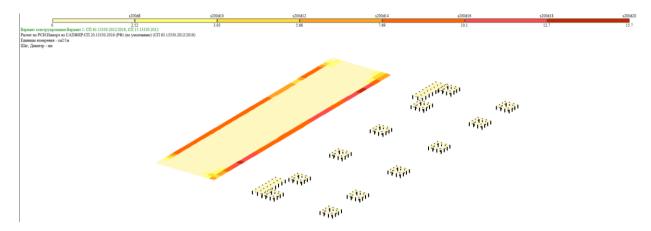


Рисунок 108 – Схема армирования низа плиты по оси ОУ

Вывод: для обеспечения необходимой и достаточной прочности при строительстве принимаем верхнюю продольную арматуру d14 A400 с шагом 200 мм, и верхнюю поперечную арматуру d18 A400 с шагом 200 мм. Нижнюю продольную арматуру принимаем d18 A400 с шагом 200мм, и нижнюю поперечную d20 A400 с шагом 200мм. Величина приопорного участка равна 1,5 м, в зоне которой подобранная арматура устанавливается с шагом 100 мм.

21 Осадка фундамента и здания

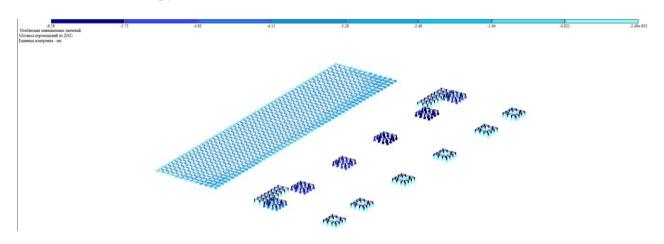


Рисунок 109 – Осадка фундамента

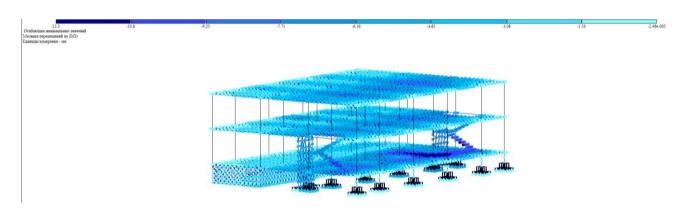


Рисунок 110 – Осадка здания

Вывод: так как рассчитанная осадка фундамента равна 6,58 мм (рисунок 109), а предельная осадка $s_u^{max}=15$ мм, следовательно по грунту фундамент проходит.

22 Усилия в колоннах

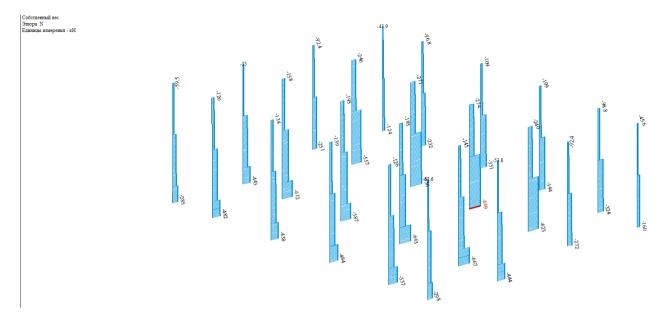


Рисунок 111 – Эпюра усилий по N

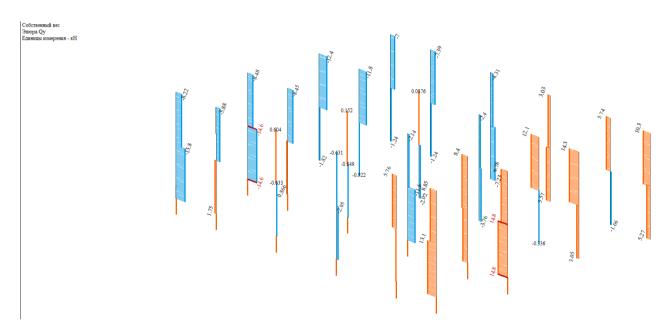


Рисунок 112 – Эпюра усилий по Q_v

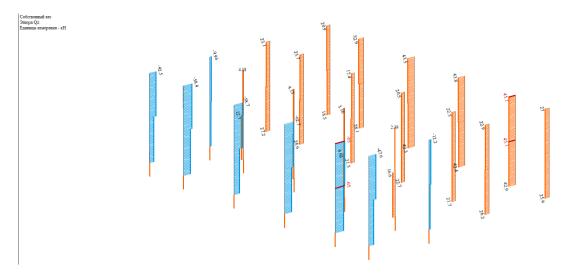


Рисунок 113 – Эпюра усилий по Q_x

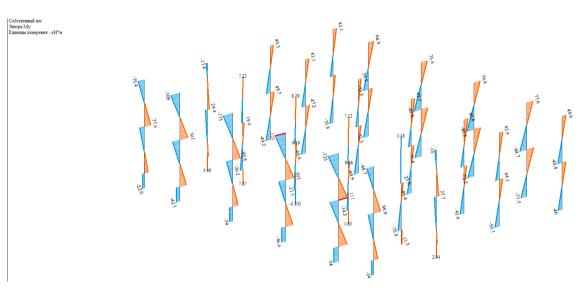


Рисунок 114 – Эпюра усилий по M_v

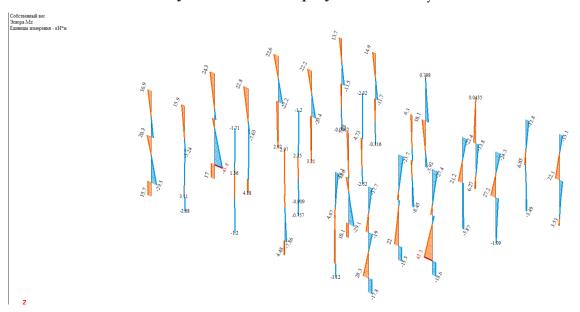


Рисунок 115 – Эпюра усилий по $M_{\rm x}$

23 Результаты конструктивного расчета колонн

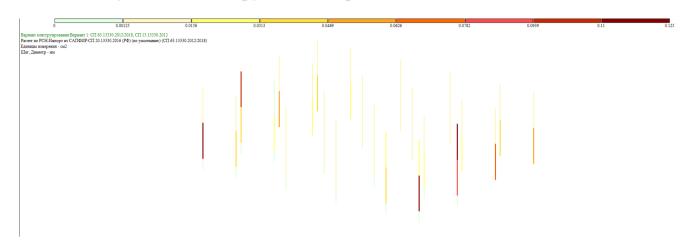


Рисунок 116 – Схема суммы армирования поперечной арматуры

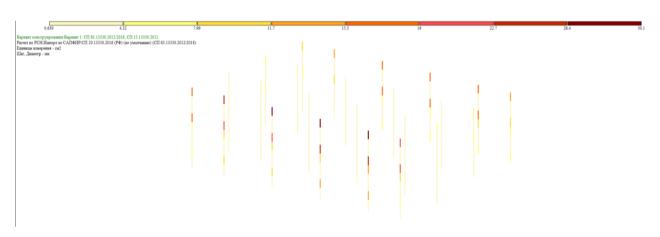


Рисунок 117 – Схема суммы армирования продольной арматуры

Вывод: для обеспечения необходимой и достаточной прочности при строительстве принимаем продольную арматуру d32 A400, поперечную – d4 A400 с шагом 200мм.

24 Усилия в балках

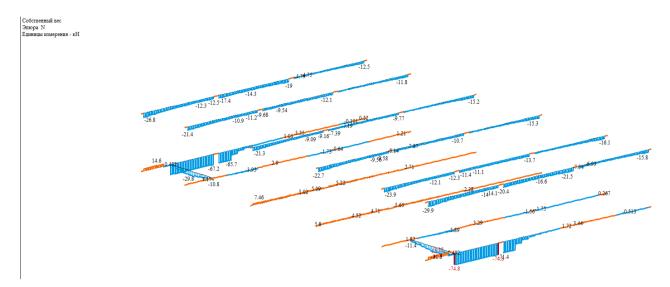


Рисунок 118 – Эпюра усилий по N

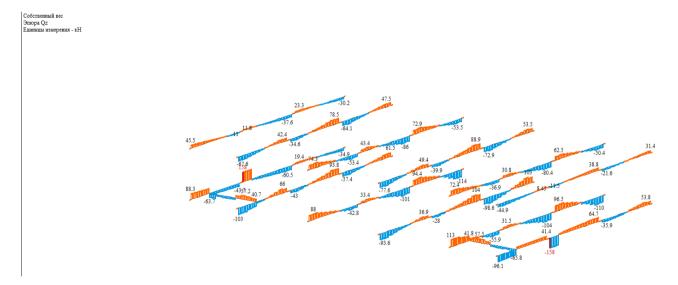


Рисунок 119 – Эпюра усилий по Q_z

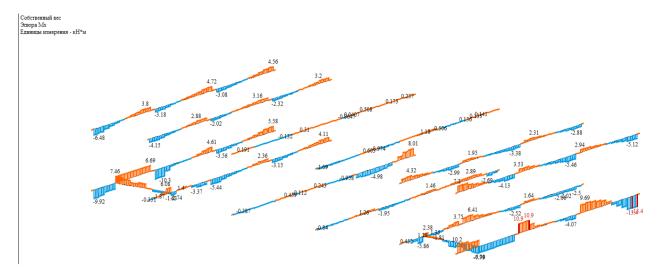


Рисунок 120 – Эпюра усилий по M_x

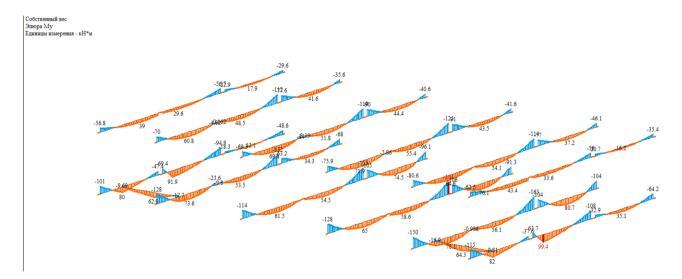


Рисунок 121 – Эпюра усилий по \mathbf{M}_{y}

25 Результаты конструктивного расчета балок

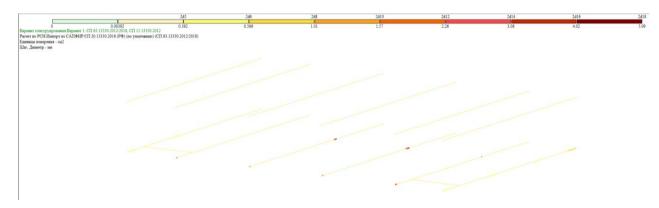


Рисунок 122 – Схема армирования верхней продольной арматуры

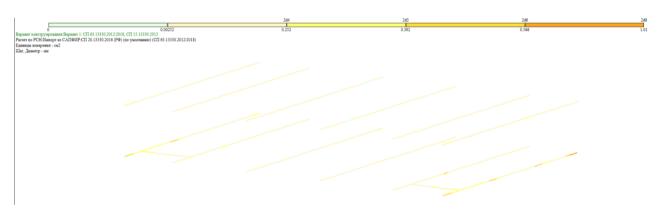


Рисунок 123 – Схема армирования поперечной арматуры

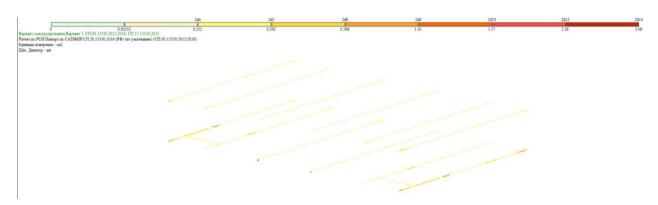


Рисунок 124 – Схема армирования нижней продольной арматуры

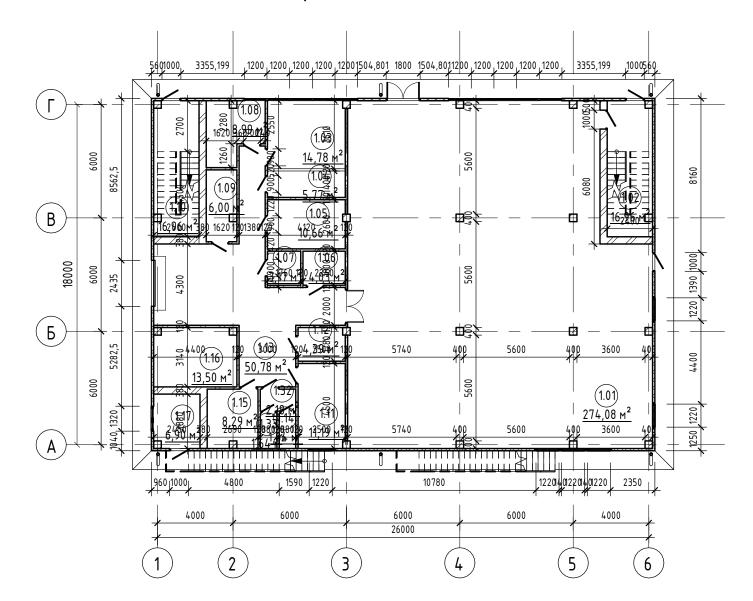
Вывод: для обеспечения необходимой и достаточной прочности при строительстве принимаем верхнюю арматуру 2d18 A400, нижнюю – 2d14 A400. Поперечная арматура d8 с шагом 200мм. На приопорных участках шаг меняется до 100 мм.

]	
Согласовано					
Согласовано					
	9	Взам. инб. №			
		llodn. u dama			
		ИНВ. № ПОДЛ.			

Ведомость рабочих чертежей основного комплекта

/lucm	Наименование	Примечание
1	Общие данные	
2	План первого этажа	
3	План второго этажа	
4	1-1, 2-2	
5	Φαςαδ 1-6, Φαςαδ Α-Γ, Φαςαδ 6-1, Φαςαδ Γ-Α	
6	3D вид модели	

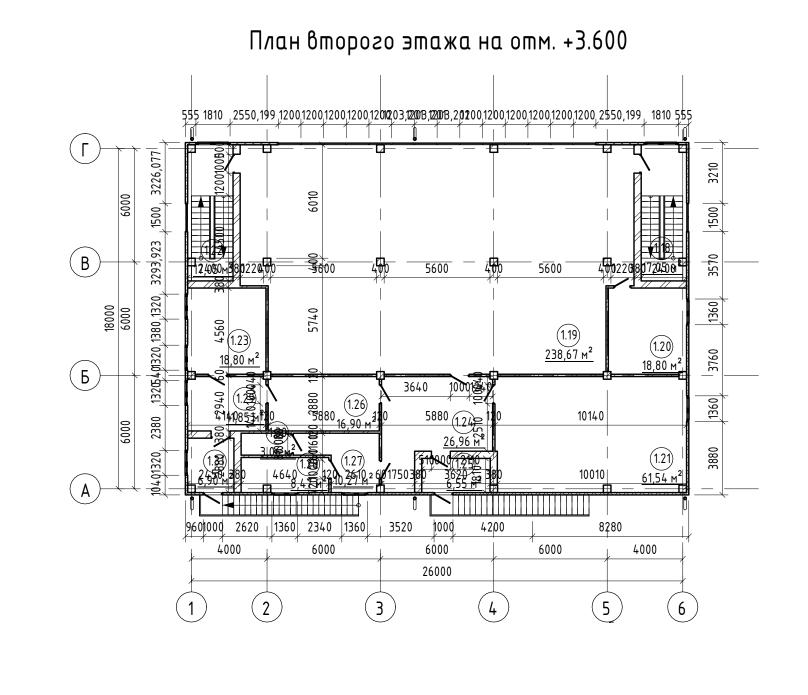
1. Настоящий проект разработан согласно заданию на проектирование, технологическому и архитектурно-строительному разделов, и в соответствии с действующей нормативно-технической документацией по проектироавнию в строительстве


- -СП 20.13330.2016 Нагрузки и воздействия
- -СП 63.13330.2018 Бетонные и железобетонные конструкции
- -СП 16.13330.2017 Стальные конструкции
- 2. Проект индивидуального Общественного здания с магазином и кафе в г. Красноярск.
- 3. Здание предназначено для строительства в зоне со следующими климатическими условиями:
- 1) Климатический район строительства ІБ
- 2) Вес снегового покрова 1,5 кН по СП 20.13330.2016

(III снеговой район)

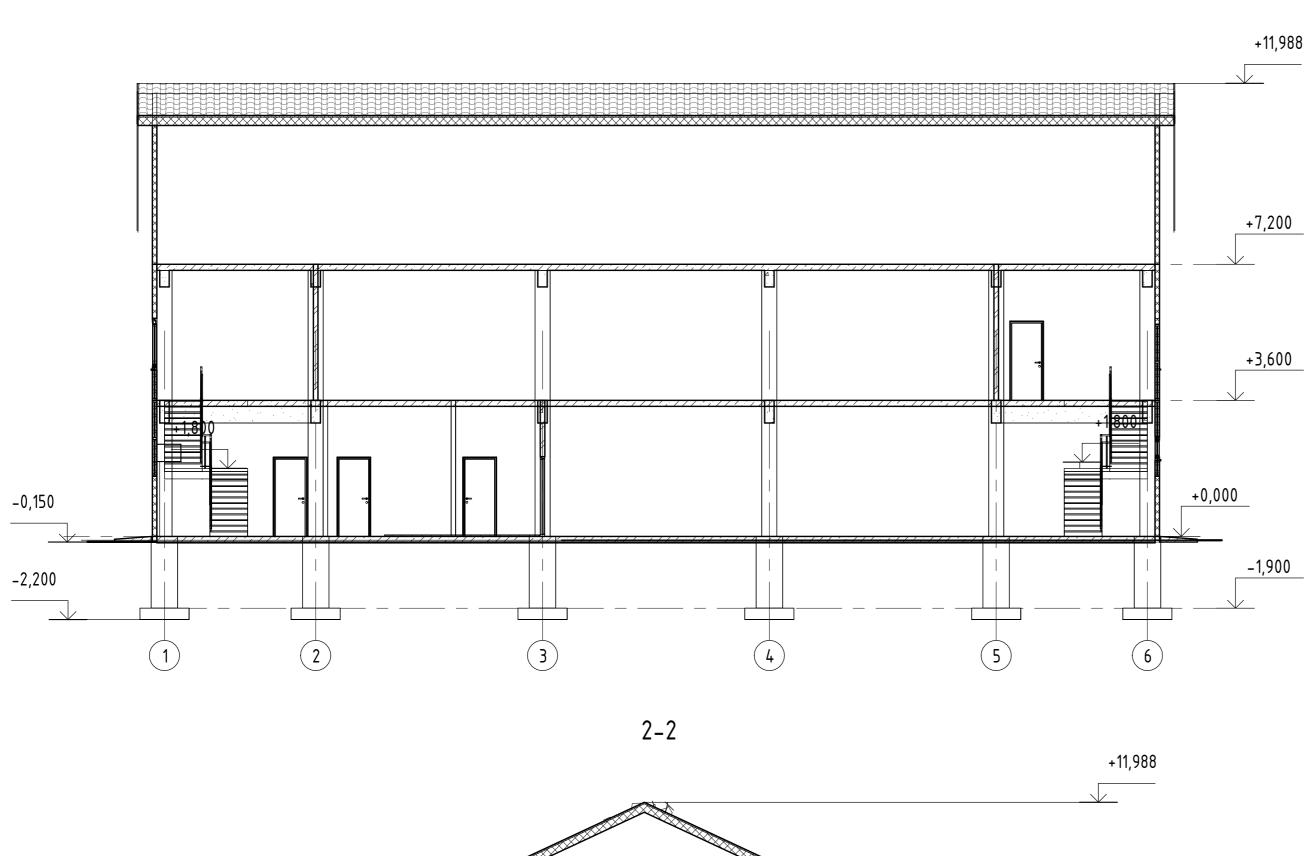
- 3) Скоростной напор ветра 0,38 кПа по СП 20.13330.2016
- (III ветровой район)
- 4) Средняя температура воздуха холодной пятидневки 37 оС.
- 3. На участке проводились геологические изыскания. Расчет фундамента сделан для суглинков II типа грунтовых условий по просадочности, нормативная глубина промерзания грунтов 0,9 м. Принято расчетное сопротивление грунта основания 1 кг/м2.
- 4. Технические решения, принятые в настоящем проекте, соответствуют требованиям экологических, санитарно-гигиенических, противопожарных и других норм, действующих на территории РФ и обеспечивают безопасную для жизни и здоровья людей эксплуатацию объекта при соблюдении предусмотренных проектом технических решений

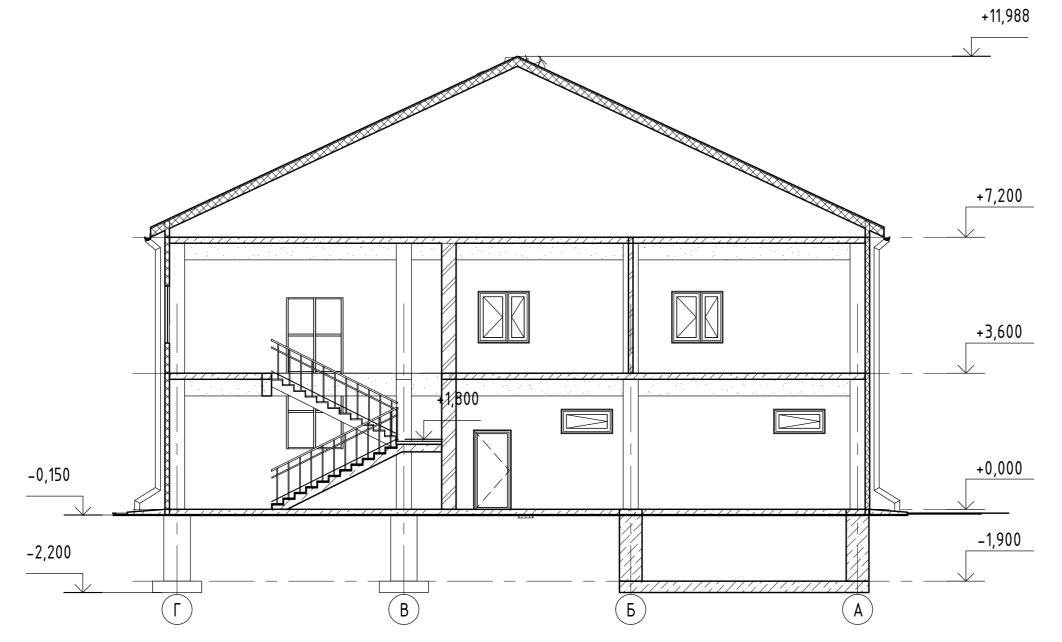
						7931.1.00.00000KΠ – AP			
Изм.	Кол.уч.	/lucm	№док.	Подп.	Дата	Общественное здание с магазином и кафе в г. Красноярск			
		Павленко И.А				Стадия	/lucm	Листов	
<u> </u>		Дроно	δ H.C.			Офисное здание.	У	1	
						Общие данные	(КБ/Кн	7 LA


План первого этажа на отм. 0.000

Экспликация помещений на отм. 0.000

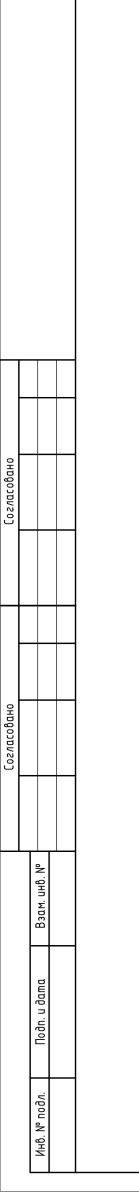
Номер помеще- ния	Наименование	Площадь, м²	Кат. поме- ще- ния
1.01	Магазин	274,08	
1.02	Лестничная клетка	16,96	
1.03	Кабинет	14,78	
1.04	Гардеробная	5,77	
1.05	Зал собраний	10,66	
1.06	Электрощитовая	4,03	
1.07	Кладовая	3,17	
1.08	Кухня	8,99	
1.09	Кладовая	6,00	
1.10	Лестничная клетка	16,96	
1.11	Офис	11,19	
1.12	Кладовая	4,39	
1.13	Холл	50,78	
1.14	Уборная	1,64	
1.15	Умывальня	8,29	
1.16	Склад	13,50	
1.17	Пост охраны	6,90	
1.32	У борная	2,18	
1.33	Душевая	1,64	

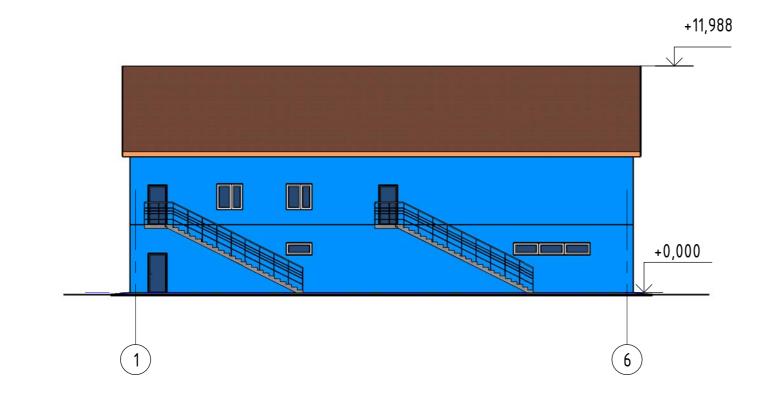

						7Ч31.1.00.0000КП – АР					
Изм.	Кол.ич.	/lucm	№док.	Подп.	Дата	Общественное здание с магазином и кафе в г. Красноярск					
Разраб	•		нко И.А				Стадия Лист /		Листов		
Проверил Дронов Н.С.				Офисное здание.	Офисное здание.						
							План первого этажа	СКБ/КнАГУ			

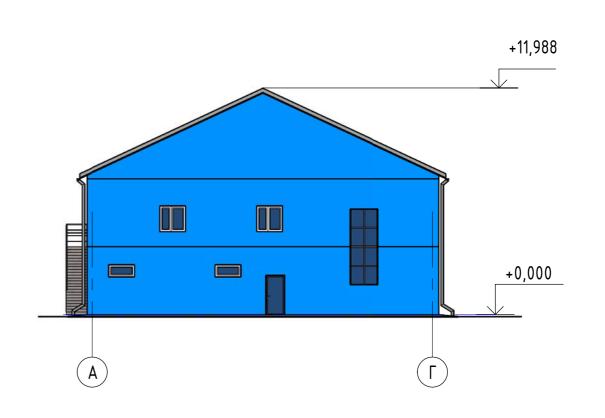


Экспликация помещений на отм. 3.600

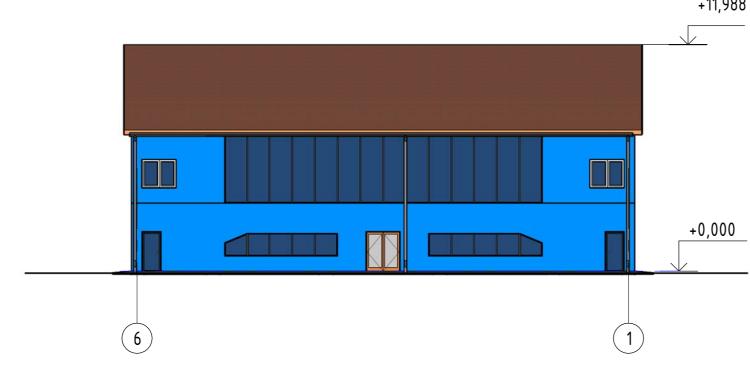
Номер помеще- ния	Наименование	Площадь, м²	Кат. поме- ще- ния
1.18	Лестничная клетка	17,05	
1.19	Καφε	238,67	
1.20	Санузел	18,80	
1.21	Кухня	61,54	
1.22	Лестничная клетка	17,05	
1.23	Кαδинет	18,80	
1.24	Коридор	26,96	
1.25	Тамбур	6,55	
1.26	Офис	16,90	
1.27	Умывальня	10,27	
1.28	Санузел	8,47	
1.29	Холл	11,85	
1.30	Кладовая	3,06	
1.31	Тамбур	6,90	

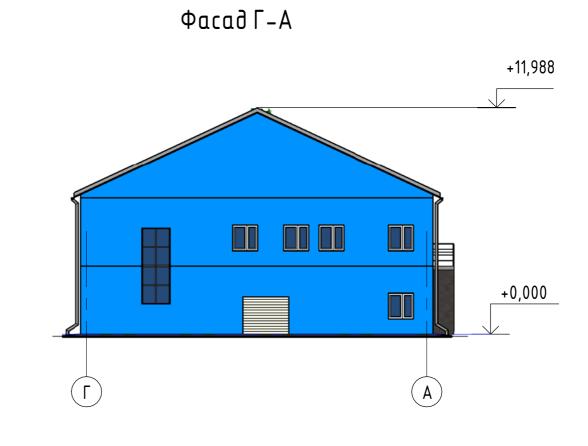

						7931.1.00.00000KΠ – AP			
		_	110.7			Оδщественное здание с магазином и кафе в г. Красноярск			
Изм.	Кол.уч.	/lucm	№док.	Подп.	Дата				
Разраб	Разраб. Павленко И.А					Стадия	/lucm	Листов	
Проверил Дронов Н.С.				Офисное здание.	Офисное эдание.				
						План второго этажа	(КБ/Кн <i>А</i>	1LA




						7931.1.00.00000KΠ – AP			
	Кол.уч.	Лист	N₀gok	Подп.	Дата	Общественное здание с магазином и кафе в г. Красноярск			
м. рай	_		нко И.А		диши		Стадия	/lucm	Листов
вер	DU/I					Офисное здание.	У	4	
						1-1, 2-2	([КБ/КнД	/LA
							Формат Д	2Δ	

Формат А2А




Φαταδ 1–6 Φαταδ Α–Γ

Фасад 6-1

						7У31.1.00.0000КП – АР			
Изм.	Кол.уч.	/lucm	№док.	Подп.	Дата	Общественное здание с магазином и кафе в г. Красноярск			
		Павленко И.А				Стадия	/lucm	Листов	
		Дронов Н.С.				Офисное здание.	исное здание. У 5		
						Фасад 1–6, Фасад А–Г, Фасад 6–1, Фасад Г–А	(ТКБ/КнА	YLA

Формат А2А

3D вид модели

						7Ч31.1.00.0000КП – АР			
Изм.	Кол.уч.	/lucm	№док.	Подп.	Дата	Общественное здание с магазином и	ı кафе в г. I	Красноярск	
азра	δ.	Павле	нко И.А				Стадия	/lucm	Листов
ровеј	роверил Дронов Н.С.				Офисное здание.	У	6		
						3D вид модели	(ТКБ/КнА	ΛГУ

Формат А2А

Министерство науки и высшего образования Российской Федерации

<u>Федеральное государственное бюджетное</u> <u>образовательное учреждение высшего образования</u> «Комсомольский-на-Амуре государственный университет»

	<u>СОГЛАСОВАНО</u>
Декан ФАМТ	Заведующий кафедрой
О.А.Красильникова	В.В.Куриный
<u>«15 » 06 2022г.</u>	« 15 » 06 2022 г.

АКТ о приемке проекта «Проектирование общественного здания в г. Красноярске»

«15» 06 2022г.

Комиссия в составе представителей:

заказчика

- *Ю.Н. Чудинов* руководитель *СПБ*
- В.В. Куриный Заведующий кафедрой САПР,
- <u>О.А.Красильникова</u> декан ФАМТ

исполнителя

- И.А. Павленко студент группы 7УЗ-1,
- составила акт о нижеследующем:

И.А. Павленко передает результаты проекта «Проектирование общественного здания в г. Красноярске».

Результаты проекта «Проектирование общественного здания в г. Красноярске» будут использованы в дальнейшем при разработке выпускной квалификационной работы.

Руководитель СКБ / проекта

Ответственный исполнитель

_____// Ю.Н. Чудинов/

Евг / И.А. Павленко /

Таблица учета проектной работы в учебных дисциплинах

Дисциплина	Форма учтенной работы (номер ЛР, КП, КР, РГР, зачет, зачет с оценкой, экзамен)	Преподаватель (дата, ФИО, подпись)	Примечание (ЗУН полученные при выполнении проекта)
Спецкурс по проектированию строительных конструкций	КП		Знает: руководящие документы по разработке и оформлению технической документации в сфере градостроительной деятельности; требования основных нормативно-технических документов по расчету и проектированию элементов железобетонных конструкций; основные положения расчетов зданий и сооружений, в том числе и на особые нагрузки; Умеет: моделировать расчетные схемы, действующие нагрузки, свойства элементов проектируемого объекта и его взаимодействие с окружающей средой; выполнять расчет и конструирование зданий и сооружений с использованием лицензионных средств автоматизированного проектирования. Владеет: навыками расчетов зданий и сооружений с использованием лицензионных средств автоматизированного проектирования - навыками разработки эскизных и технических проектов в сфере инженерно-технического проектирования для градостроительной деятельности