Министерство науки и высшего образования Российской Федерации

Федеральное государственное бюджетное образовательное учреждение высшего образования «Комсомольский-на-Амуре государственный университет»

СОГЛАСОВАНО

Декан ФАМТ

Информационное моделирование зданий и сооружений СКБ КнАГУ

УТВЕРЖДАЮ

Начальник отдела ОПРО

(подпись)	l	1		в.В. Солецкий
« <u>15</u> » <u>06</u> 20 <u>22</u> г.	<	(<u>15</u> »_		20 <u>22</u> Γ.
Заведующий кафедрой				
В.В.Куриный				
« <u>15</u> » <u>06</u> 20 <u>22</u> г.				
Проект «Проектировани	е офисного здания	«w		
Руководитель СКБ (подпись, дата)	15h		Ю.Н.	Нудинов
Руководитель проекта	(подпись, дата)	>	Н.	С. Дронов
Ответственный исполнитель	July-		<i>P.A.</i>	Палшкова
	(подпись, дата)		

Комсомольск-на-Амуре 2022

Карточка проекта

Название	«Разработка расчетной модели проекта
	офисного здания в г. Хабаровск»
Тип проекта	Инициативный
Исполнители	Р.А. Палшкова 7У3-1
Срок реализации	февраль 2022 г. – июнь 2022 г.

Исходная информация

Исходные данные	Проектная документация реального проекта, выполненная по стандартным технологиям проектирования (двумерные чертежи)- архитектурно-строительные чертежи
Тип разрабатываемой информационной модели	Архитектурная
Область использования	Проектирование зданий и сооружений
Регламентирующие	Федеральный закон «Технический
документы	регламент о безопасности зданий и сооружений» от 30.12.2009 N 384-ФЗ (ред. от 02.07.2013) СП 20.13330.2016 Нагрузки и воздействия; СП 63.13330.2018 Бетонные и железобетонные конструкции; СП 22.13330.2016 Основания и фундаменты; СП 118.13330.2012 Общественные здания и сооружения;

Министерство науки и высшего образования Российской Федерации

Федеральное государственное бюджетное образовательное учреждение высшего образования «Комсомольский-на-Амуре государственный университет»

ЗАДАНИЕ на разработку

Название проекта: «Разработка расчетной модели проекта офисного здания в г. Хабаровск»

Назначение:_Создание проектной документации в виде расчетной модели, согласно требованиям постановления Правительства Российской Федерации № 331 от 5 марта 2021 г. "Об установлении случая, при котором застройщиком, техническим заказчиком, лицом, обеспечивающим или осуществляющим подготовку обоснования инвестиций, и (или) лицом, ответственным за эксплуатацию объекта капитального строительства, обеспечиваются формирование и ведение информационной модели объекта капитального строительства"

Область использования: Проектирование зданий и сооружений

Типы разрабатываемых расчетных и архитектурных моделей:

расчетная модель (ПК «САПФИР),

расчетная модель (ПК «Лира-САПР»),

архитектурная модель (ПК «REVIT»),

Уровень детализации объекта в рамках проекта:

Разработка расчетно-конструктивного раздела для стадии I. (проектирование)

Применяемые САПР

-системы:

Программа ПК «САПФИР», ПК «Лира-САПР», ПК «REVIT»
Основной регламентирующий нормативный документ: <u>Федеральный закон</u>
«Технический регламент о безопасности зданий и сооружений» от
30.12.2009 N 384-ФЗ (ред. от 02.07.2013)

План работ:

Наименование работ	Срок	
Получение технического задания, разработка концептуальных решений	февраль-март 2022 г.	
Разработка архитектурной части проекта	апрель-май 2022 г	
Расчет основных конструкций здания с разработкой рабочей документации	июнь 2022 г	

Комментарии:

Перечень графического материала:

<u>План первого этажа на отм. 0.000; План второго этажа на отм. 3.000,</u> <u>Разрез 1-1; Разрез 2-2; Фасад 1-6; Фасад А-Д; Фасад 6-1; Фасад Д-А, 3D вид</u> модели

Руководитель проекта

(подпись, дата)

Н.С. Дронов

(подпись, да

Исполнитель проекта

Р.А. Палшкова

СОДЕРЖАНИЕ

Введение	7
1 Общие данные	8
2 Конструктивные решения здания, включая пространственные схемы,	
принятые при выполнении расчетов конструкций	8
3 Материалы несущих конструкций	9
4 Нагрузки и воздействия	10
4.1 Сбор нагрузок	10
4.2 Снеговая нагрузка	11
4.3 Ветровая нагрузка	12
4.4 Эксплуатационные нагрузки	12
5 Описание грунтового основания	
6 Загружения	14
7 Описание расчетной схемы	17
8 Результаты статического расчета	19
8,1 Мозаика минимальных напряжений в межэтажном перекрытии	19
8.2 Мозаика максимальных напряжений в межэтажном перекрытии	27
8.3 Мозаика минимальных напряжений в колоннах	35
8.4 Мозаика максимальных напряжений в колоннах	41
8.5 Мозаика минимальных напряжений в балках	47
8.6 Мозаика максимальных напряжений в балках	53
9 Результаты конструктивного расчета	59
9.1 Результаты конструктивного расчета межэтажного перекрытия	60
9.2 Результаты конструктивного расчета колонны 400х400	65
9.3 Результаты конструктивного расчета балки (400х500)	66
10 Расчет фундаментов	68
10.1 Проверка сваи по грунту	68
10.2 Конструктивный расчет сваи	69

Введение

Конструктивные и объемно-планировочные решения — неотъемлемая часть проекта здания (сооружения), направленная на реализацию архитектурных замыслов.

Данный раздел определяет характеристики основных несущих конструкций, в соответствии с их назначением назначение, которые должны обеспечивать прочность, устойчивость и долговечность строения. Так же раздел содержит необходимые расчёты в специальных программных комплексах с учётом действующих нагрузок.

1 Общие данные

В разделе разработана конструктивная схема проектируемого здания и документации марки «КР». Выполнены соответствующие расчеты.

Раздел разработан в соответствии:

- СП 20.13330.2016 Нагрузки и воздействия
- СП 63.13330.2018 Бетонные и железобетонные конструкции
- СП 16.13330.2017 Стальные конструкции

2 Конструктивные решения здания, включая пространственные схемы, принятые при выполнении расчетов конструкций

Всё здание в плане имеет прямоугольную форму.

Габаритные размеры здания, размеры здания в осях 1-6 24 м., A-Д 18 м.,

Количество этажей – 2

Назначение здание – офисное.

Уровень ответственности по ГОСТ 27751-2014 – КС-3

Степень огнестойкости здания – І

Класс конструктивной пожарной опасности – С0

Класс функциональной пожарной опасности — Ф 4.3. «Учреждения органов управления, проектно-конструкторские организации, информационные и редакционно-издательские организации, научно-исследовательские организации, банки, конторы, офисы». Коридорная система здания с кабинетами по обе стороны, находящиеся внутри осведомлены о путях эвакуации. Обычно — много мелких кабинетов, посетителей — мало.

Конструктивная схема здания - полный каркас с бетонным заполнением, класс бетона В30 по ГОСТ 25192-2012, толщина стен 200 мм. с облицовкой из фасадного кирпича по ГОСТ 530-2012.

Колонны железобетонные монолитные сечением 400х400 мм., классом бетона B25 по ГОСТ 25192-2012 и арматурой класса A400 по ГОСТ Р 52544-2006.

Балки железобетонные сечением 400x500 мм., классом бетона B20 по ГОСТ 25192-2012 и арматурой класса A400 по ГОСТ P 52544-2006.

На кровле предусмотрен монолитный железобетонный парапет, класс бетона В30 по ГОСТ 25192-2012 и арматурой класса А400 по ГОСТ Р 52544-2006, толщиной 200 мм. и высотой 800 мм., образующий пояс жесткости.

Фундамент здания представляет собой ростверк плитный, классом бетона ВЗО по ГОСТ 25192-2012 и арматурой класса А400 по ГОСТ Р 52544-2006, толщиной 600 мм., опирающийся на свайное основание из бурозабивных свай.

Сваи железобетонные, класс бетона B20 по ГОСТ 25192-2012 и арматурой класса A400 по ГОСТ Р 52544-2006, диаметром 400 мм., длина свай 7,6 м. Узел стыка свая-фундамент жесткий, что обеспечивается за счет выпуска арматуры сваи в фундаментную плиту.

Кровля — плоская, неэксплуатируемая с внутренним водостоком. Материал покрытия — мембрана ГОСТ Р 56704-2015., утеплитель — минеральная вата толщиной 200 мм. по ГОСТ 4640-2011.

Лестничные марши – сборные железобетонные индивидуального изготовления.

3 Материалы несущих конструкций

Материалы основных несущих конструкций:

Плиты перекрытия:

- бетон класса В30 (ГОСТ 25192-2012), арматура А400 ГОСТ Р 52544-2006;

Ж/б колонны:

- бетон класса B25 (ГОСТ 25192-2012), арматура A400 ГОСТ Р 52544-2006;

Ж/б балки:

- бетон класса B20 (ГОСТ 25192-2012), арматура A400 ГОСТ Р 52544-2006;

Ростверк:

- бетон класса В30 (ГОСТ 25192-2012), арматура А400 ГОСТ Р 52544-2006;

Ж/б сваи:

- бетон класса B20 (ГОСТ 25192-2012), арматура A400 ГОСТ Р 52544-2006;

4 Нагрузки и воздействия

4.1 Сбор нагрузок

Таблица 1 - Сбор нагрузок

№	Вид нагрузки	Нормативная	Коэффициент	Расчетная				
		нагрузка	надежности	нагрузка				
		$\kappa\Gamma/M^2$	по нагрузке	$\kappa\Gamma/M^2$				
1	Наружная стена							
	Утеплитель $\delta = 200$ мм (140	$140 \times 0.2 = 28$	1,3	36,4				
	кг/м3)							
	Штукатурка $\delta = 10$ мм (1600	$1600 \times 0.01 = 16$	1,3	20,8				
	кг/м3)							
	Облицовочный кирпич $\delta = 50$	2500 x 0,05=125	1,2	150				
	мм (2500 кг/м3)							
	Итого:			207,2				
2		Кровля						
	Утеплитель $\delta = 200 \text{ мм}(140 $	$140 \times 0.2 = 2.8$	1,3	36,4				
	кг/м3)							
	Гидроизоляция $\delta=100$ мм	350 x 0,1=35	1,3	45,5				
	(350 кг/м3)							
	Стяжка $\delta = 80$ мм (1800 кг/м3)	1800 x 0,08= 144	1,3	187,2				
	Мембрана $\delta = 20$ мм (1300	1300 x 0,02=26	1,3	33,8				
	кг/м3)							
	Итого:			302,9				
3	Меж	этажное перекрыти	ie					

Стяжка $\delta = 80$ мм (1800 кг/м 3)	$1800 \times 0.08 = 144$	1,3	187,2
Плитка $\delta = 20$ мм (900 кг/м3)	$900 \times 0.02 = 18$	1,3	23,4
Итого:			210,6

4.2 Снеговая нагрузка

Нормативное значение снеговой нагрузки на горизонтальную проекцию покрытия следует определять по формуле

$$S_0 = c_e c_t \mu S_g$$

где c_e - коэффициент, учитывающий снос снега с покрытий зданий под действием ветра или иных факторов.

 c_t - термический коэффициент; $c_t = 1$

 μ - коэффициент формы, учитывающий переход от веса снегового покрова земли к снеговой нагрузке на покрытие; $\mu=1$

 S_g - нормативное значение веса снегового покрова на 1 м горизонтальной поверхности земли.

Снеговой район г. Хабаровск - II. S_g = 1 кH/м2.

$$c_e = (1.4 - 0.4\sqrt{k})(0.8 + 0.002l_c$$

где k -коэффициент для типов местности. k = 1,7

 $l_c = 2b - \frac{b^2}{l}$ - характерный размер покрытия, принимаемый не более 100 м;

b - наименьший размер покрытия в плане;

1 - наибольший размер покрытия в плане.

$$l_c = 2 * 18 - \frac{18^2}{24} = 22.5$$
 $c_t = 0.76$ $S_0 = 1000 * 0.76 = 760 \text{ H/m2}$

Расчетная снеговая нагрузка определяется

$$S_n = S_0 * k$$

где k – коэффициент надежности по нагрузке. k =1,4.

$$S_n = 76 * 1.4 = 106.4 \,\mathrm{kg/m2}$$

4.3 Ветровая нагрузка

Нормативное значение ветрового давления принимается в зависимости от ветрового района:

Ветровой район г. Хабаровск – III. $w_0 = 0.38$ кПа

Нагрузка задаётся в автоматическом режиме в ПК «САПФИР».

4.4 Эксплуатационные нагрузки

Нормативные значения равномерно распределенных кратковременных нагрузок следует принимать согласно СП 20.13330.2016, пункт 8.2, таблица 8.3.

Таблица 2 – нормативные значения нагрузок

№	Помещения здания	Нормативные значения равномерно
		распределенных нагрузок P , к Π а,
1	Служебные, бытовые	2,0
	помещения, офисы	
2	Залы ожидания, холл	4,0
3	Коридоры и лестницы	3,0

5 Описание грунтового основания

На основании визуального описания, лабораторных анализов и статистической обработки частных значений показателей физико - механических свойств в пределах изученной территории выделено 4 инженерно-геологических элемента грунта. Ниже приводится описание грунтов на уровне разновидностей по ИГЭ.

					Коэф-	Удель-	Коэффици-	Природ-	Показа-		Коэффи-		Угол	Предельное	Коэффициент
Nº	Усл.	Наименование	Цвет	Модуль	фици-	ный	ент пере-	ная	тель	Вода	циент	Удельное	внутрен-	напряжение	пропорцио-
ИГЭ	обозн.	грунта		дефор-	ент	вес	хода ко 2	влаж-	теку-	Лёсс	порис-	сцепление	него	растяжения	нальности К,
				мации,	Пуас-	грунта,	модулю де-	ность,	чести		тости	Rc,	трения	Rs,	тс/м**4
				кН/м**2	сона	кН/м**3	формации	доли	IL		е	кН/м**2	Fi, °	кН/м**2	и код грунта
1		Насыпной		9806.65	0.3	17.652	5	0.05	0.2		0.7	4.90332	16	0.980665	235 Cf
2		Песок пылеватый		17652	0.3	17.1616	5	0.25		W	0.54	0.980665	31	0.196133	400 S0
3		Супесь		19613.3	0.3	17.8481	5	0.26	1.1	W	0.72	7.84532	22	1.56906	235 Sp
4		Суглинок тугоплас		17652	0.35	18.3384	5	0.17	0.26		0.68	19.6133	18	3.92266	496 Ls
5		Глина полутвёрда:		21574.6	0.42	18.8288	5	0.02	0.15		0.8	49.0332	16	9.80665	540 Cs

Рисунок 1 – Таблица грунтового основания

- $И\Gamma$ Э 1 Насыпной слой. На момент изысканий находился в сезонно-мёрзлом состоянии. Не опробован. Нормативное значение плотности грунта принято по Γ ЭСН 2001 1,20 г/см3.
- $И\Gamma$ Э 2 Песок пылеватый. На момент изысканий находился в сезонно-мёрзлом состоянии. Не опробован. Нормативное значение плотности грунта принято по Γ ЭСН 2001 1,20 г/см3.
- ИГЭ 3 Супесь. Нормативные значения физических характеристик получены по 5 пробам ненарушенного сложения и составляют: естественная влажность 0,26, удельный вес 17,8481 кН/м3, коэффициент пористости 0,72. Глубина залегания 7 м. Подходит как естественное основание для проектируемого здания.
- ИГЭ 4 Суглинок тугопластичный. Нормативные значения физических характеристик получены по 5 пробам ненарушенного сложения и составляют: естественная влажность 0,17, удельный вес 18,3384 кН/м3, коэффициент пористости 0,68. Глубина залегания 10 м.
- ИГЭ 5 Глина полутвердая. Нормативные значения физических характеристик получены по 5 пробам ненарушенного сложения и составляют: естественная влажность 0,02, удельный вес 18,8288 кН/м3, коэффициент пористости 0,8. Глубина залегания 10 м.

Рисунок 2 – Грунтовое основание с ж/б сваями

6 Загружения

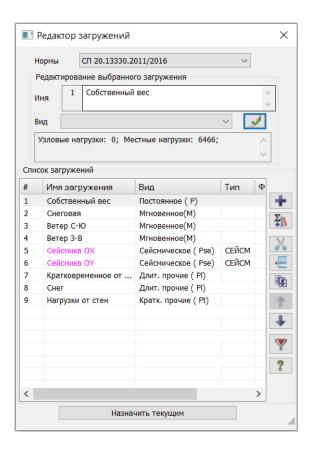


Рисунок 3 – редактор загружений

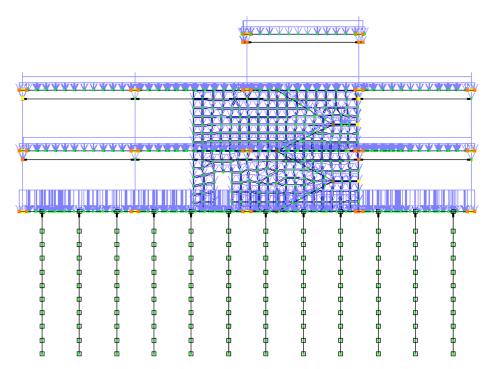


Рисунок 4 – Собственный вес

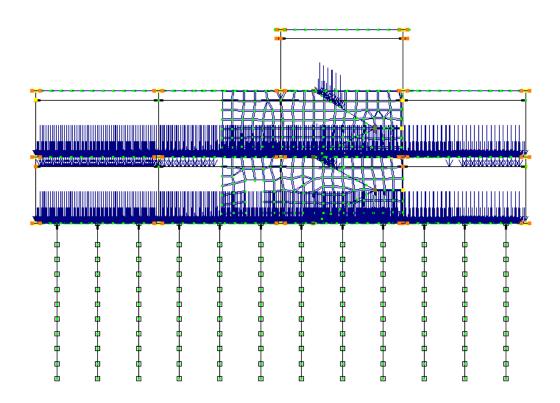


Рисунок 5 – Эксплуатационная нагрузка

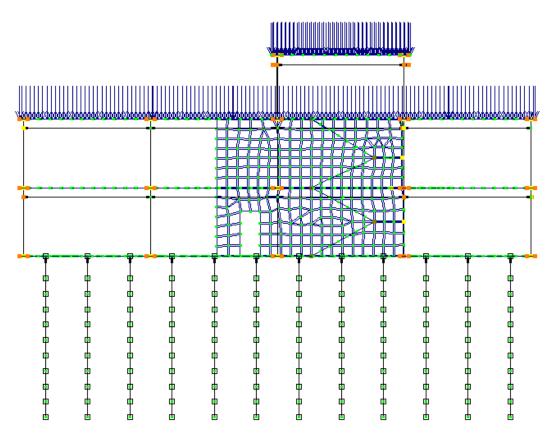


Рисунок 6 – Снеговая нагрузка

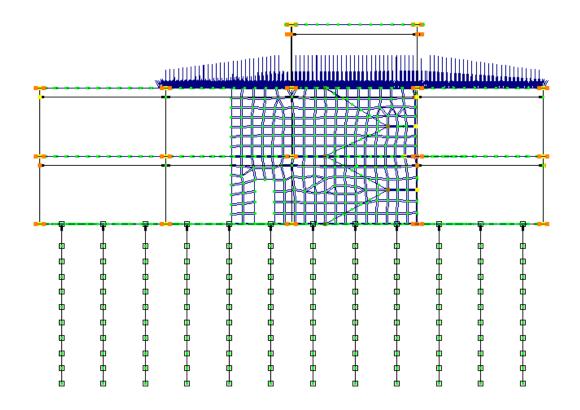


Рисунок 7 – Снеговые мешки

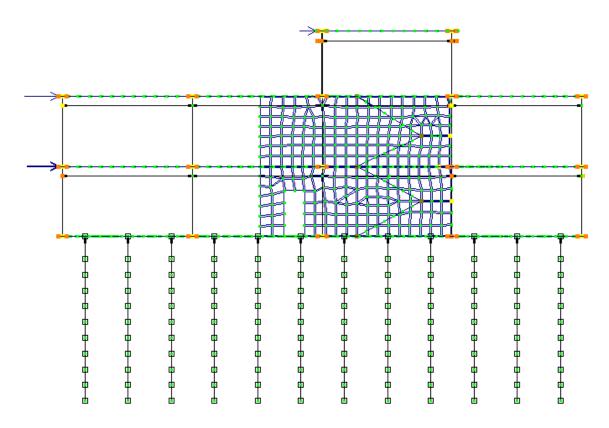


Рисунок 8 – Ветер Ю-С

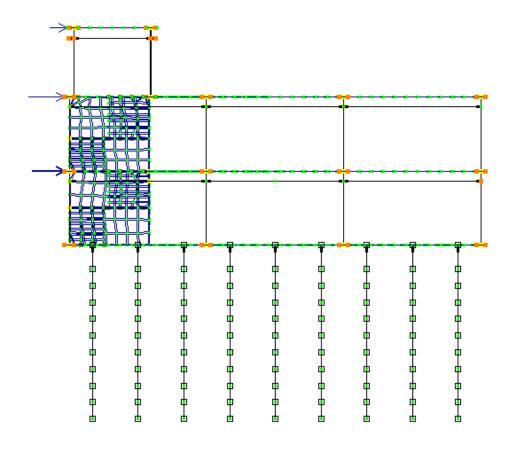


Рисунок 9 – Ветер 3-В

7 Описание расчетной схемы

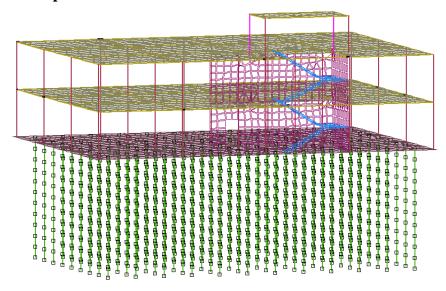


Рисунок 10 – Общий вид расчетной модели

Расчет производим в ПК Лира САПР. Тип конечного элемента и размер сечения для каждой группы элементов расчетной схемы указан в таблице 2.

Таблица 2 – Типы конечных элементов

Название элемента	Тип конечного элемента	Сечение, мм
Ростверк	42, 44 (треугольный и четырехугольный КЭ оболочки)	600
Межэтажные перекрытия	42, 44 (треугольный и четырехугольный КЭ оболочки)	200
Стены	42, 44 (треугольный и четырехугольный КЭ оболочки)	200
Балка	10 (универсальный пространственный элемент)	400x400
Свая	57 (одноузловой КЭ для свай)	400

8 Результаты статического расчета

На основании выполненного статического расчет были получены огибающие максимальных и минимальных значений усилий.

8,1 Мозаика минимальных напряжений в межэтажном перекрытии

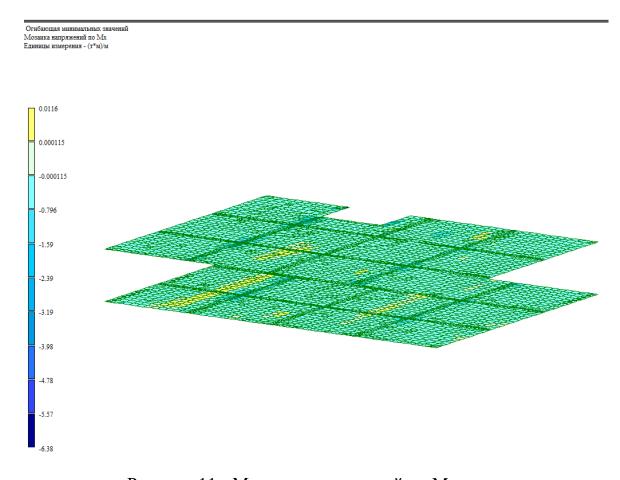


Рисунок 11 - Мозаика напряжений по Мх

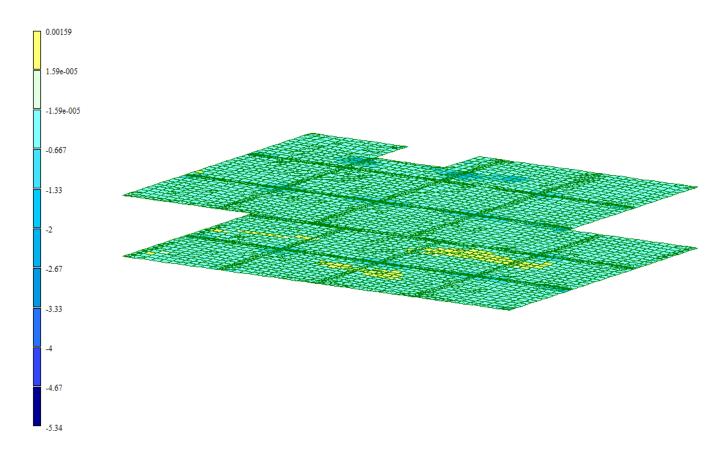


Рисунок 12 - Мозаика напряжений по Му

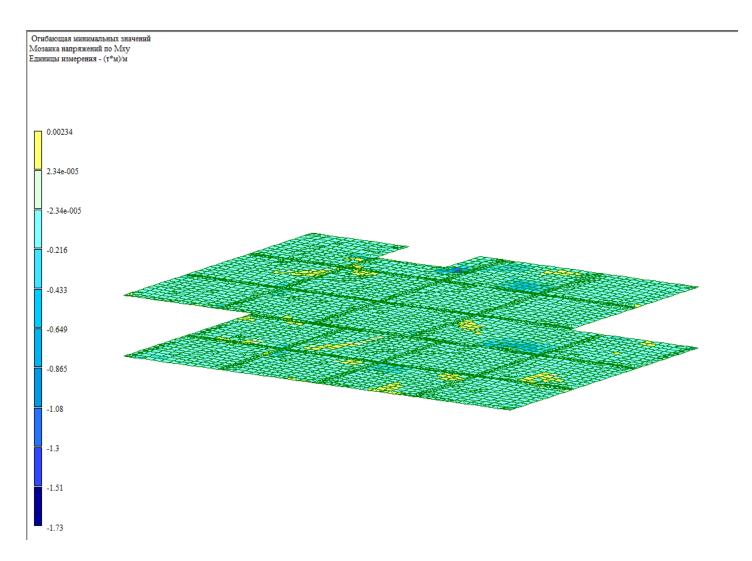


Рисунок 13 - Мозаика напряжений по Мху

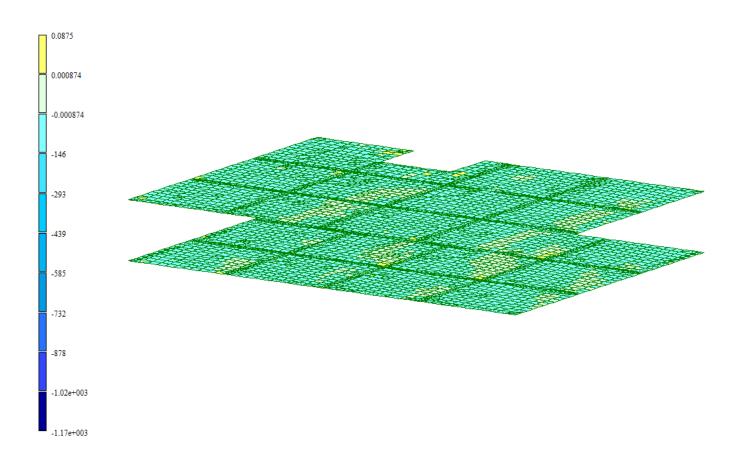


Рисунок 14 - Мозаика напряжений по Qx

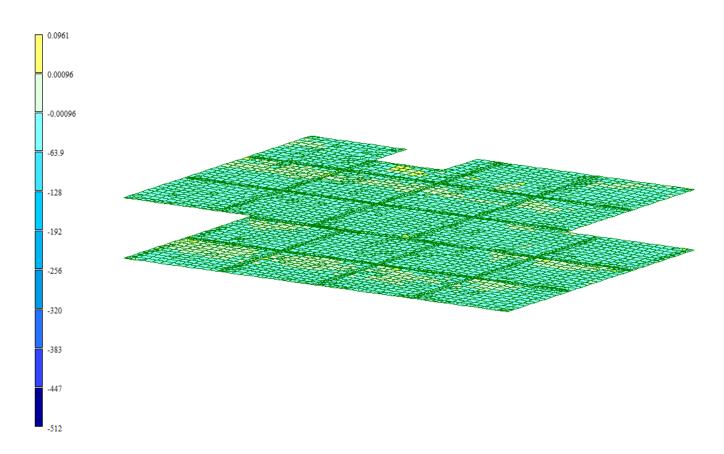


Рисунок 15 - Мозаика напряжений по Qy

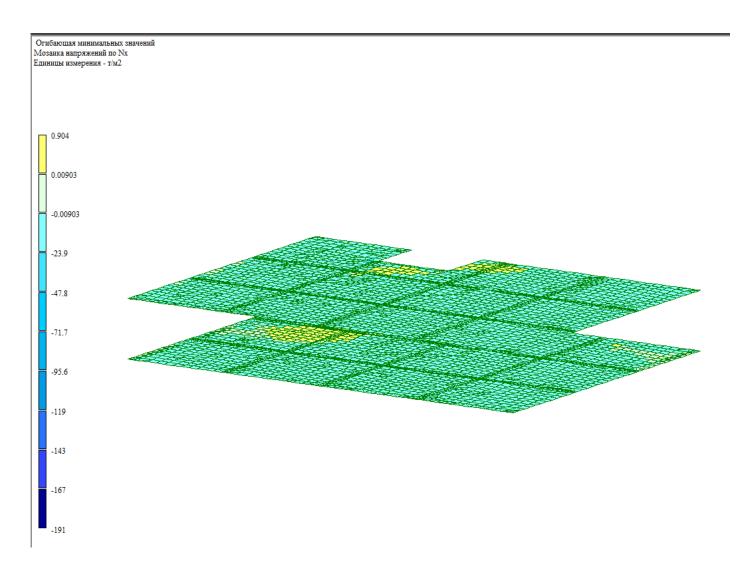


Рисунок 16 - Мозаика напряжений по Nx

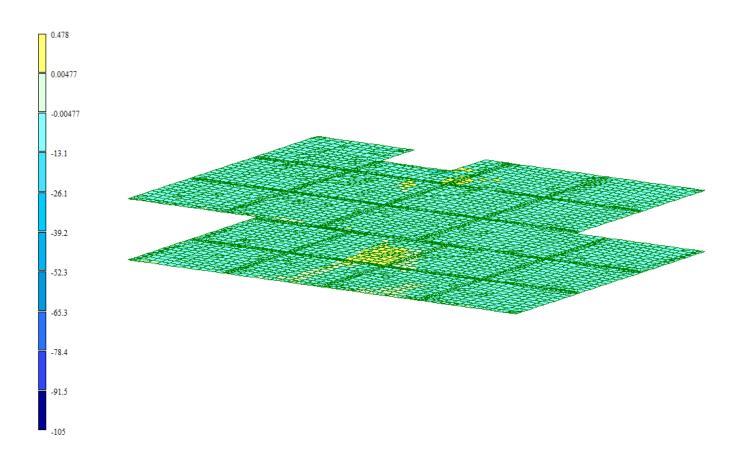


Рисунок 17 - Мозаика напряжений по Ny

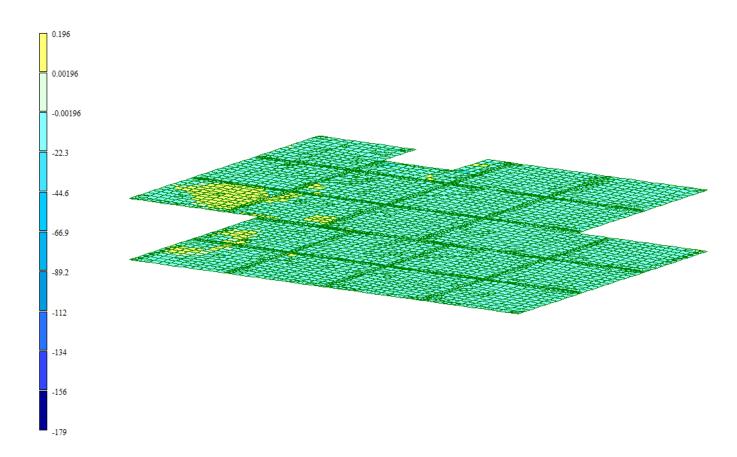


Рисунок 18 - Мозаика напряжений по тху

8.2 Мозаика максимальных напряжений в межэтажном перекрытии

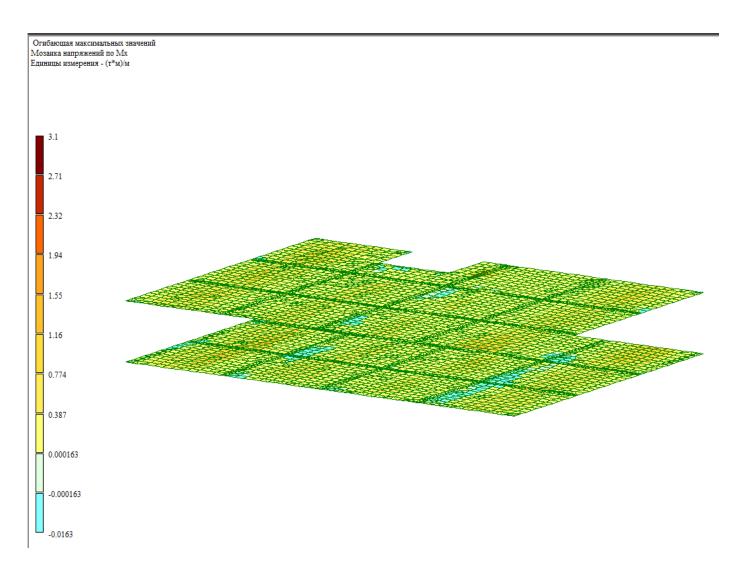


Рисунок 19 - Мозаика напряжений по Мх

Отибающая максимальных значений Мозаика напряжений по Му Единицы измерения - (т*м)/м

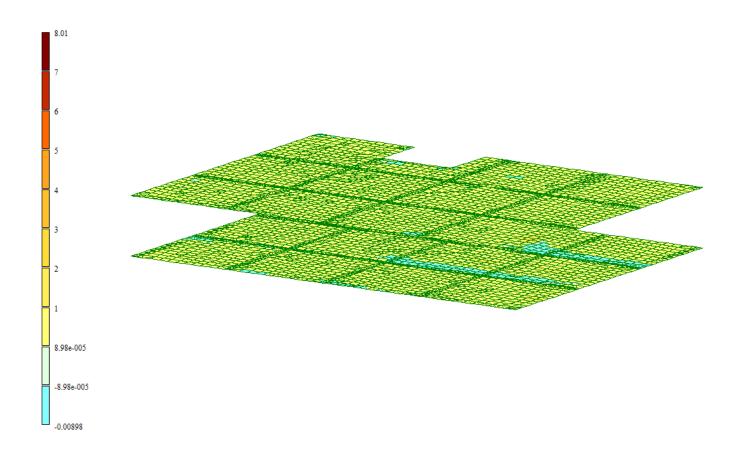


Рисунок 20 - Мозаика напряжений по Му

Огибающая максимальных значений Мозаика напряжений по Мху Единицы измерения - (т*м)/м

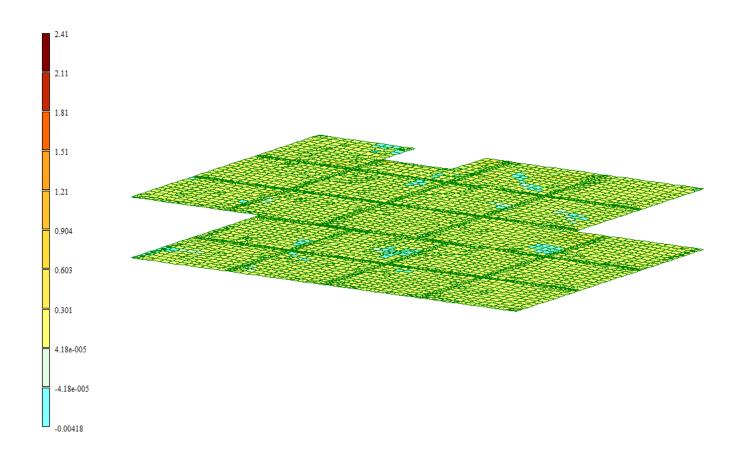


Рисунок 21 - Мозаика напряжений по Мху

Отибающая максимальных значений Мозаика напряжений по Qx Единицы измерения - т/м

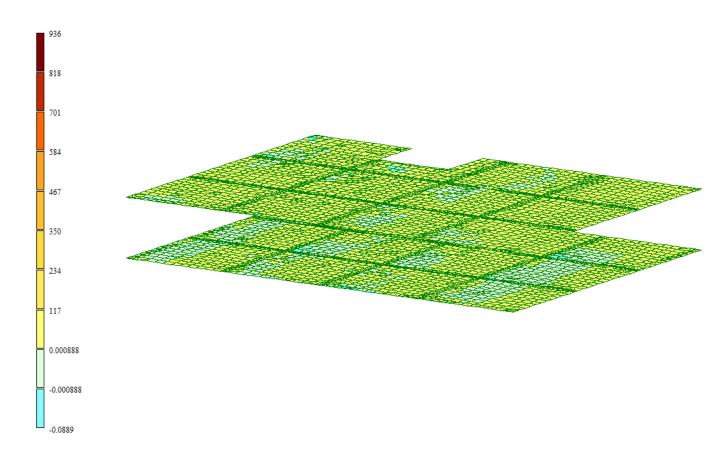


Рисунок 22 - Мозаика напряжений по Qx

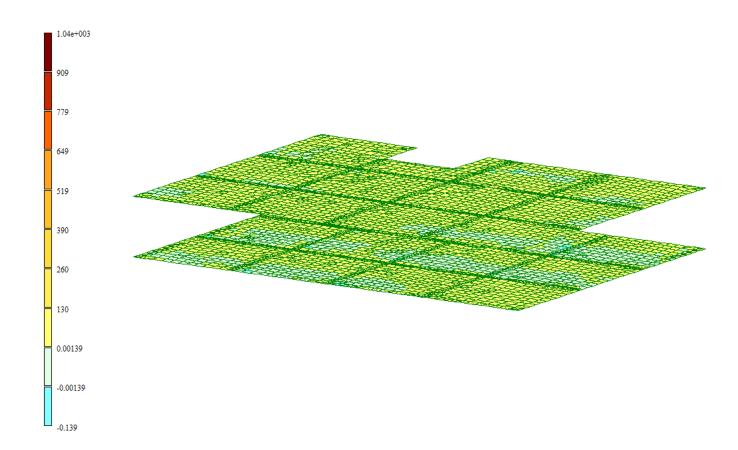


Рисунок 23 - Мозаика напряжений по Qy

Отибающая максимальных значений Мозаика напряжений по Nx Единицы измерения - т/м2

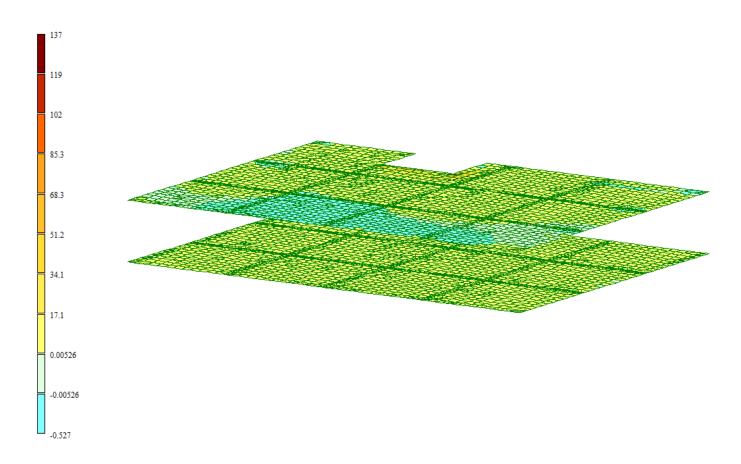


Рисунок 24 - Мозаика напряжений по Nx

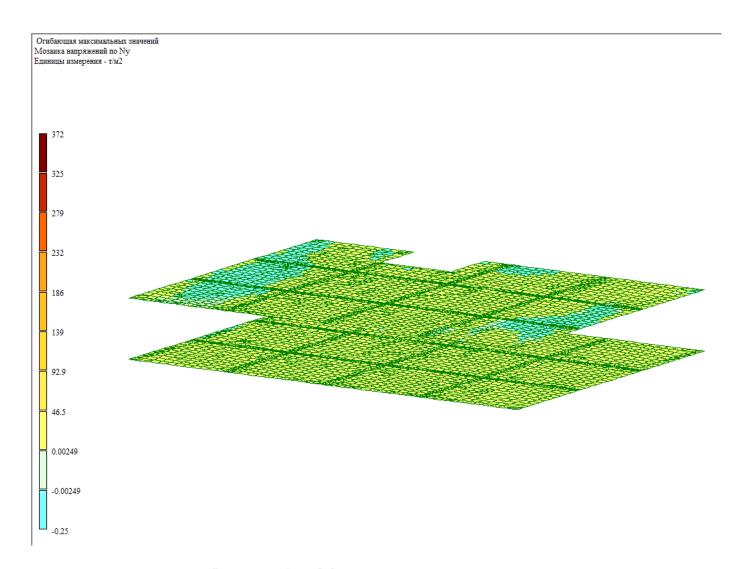


Рисунок 25 - Мозаика напряжений по Ny

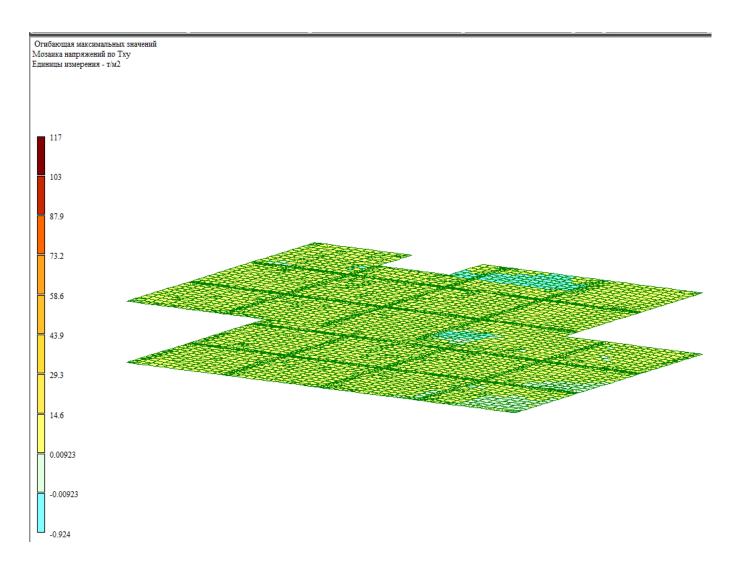


Рисунок 26 - Мозаика напряжений по тху

8.3 Мозаика минимальных напряжений в колоннах

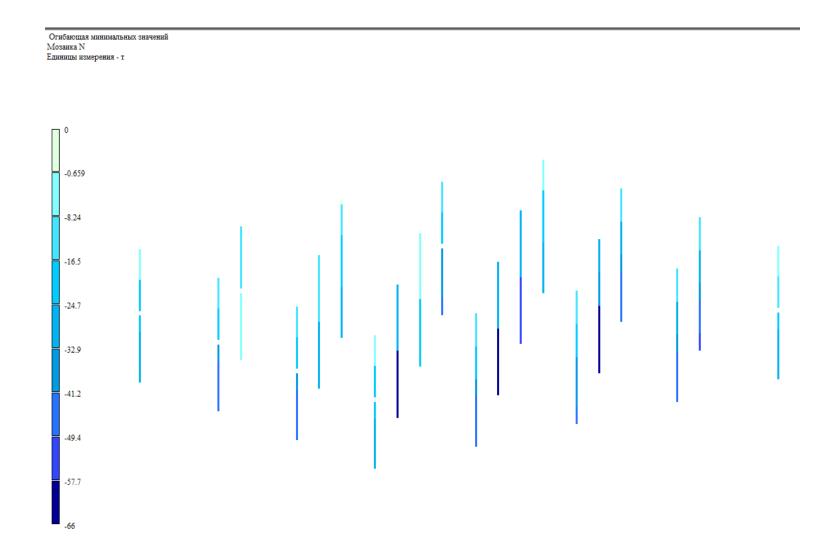
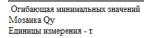



Рисунок 27 - Мозаика напряжений по N

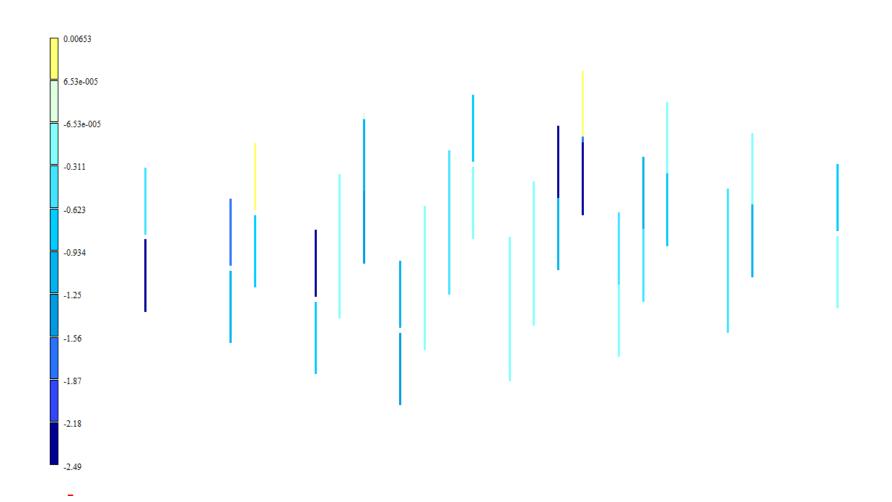


Рисунок 28 - Мозаика напряжений по Qy

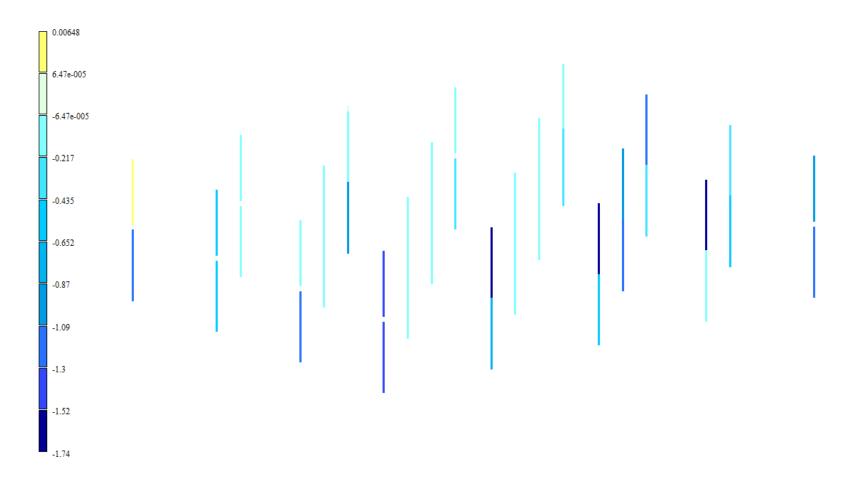


Рисунок 29 - Мозаика напряжений по Qz



Рисунок 30 - Мозаика напряжений по Мх

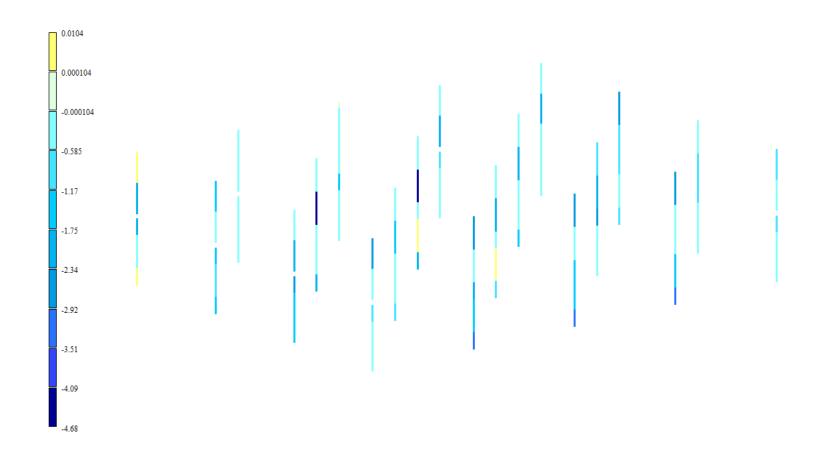


Рисунок 31 - Мозаика напряжений по Му

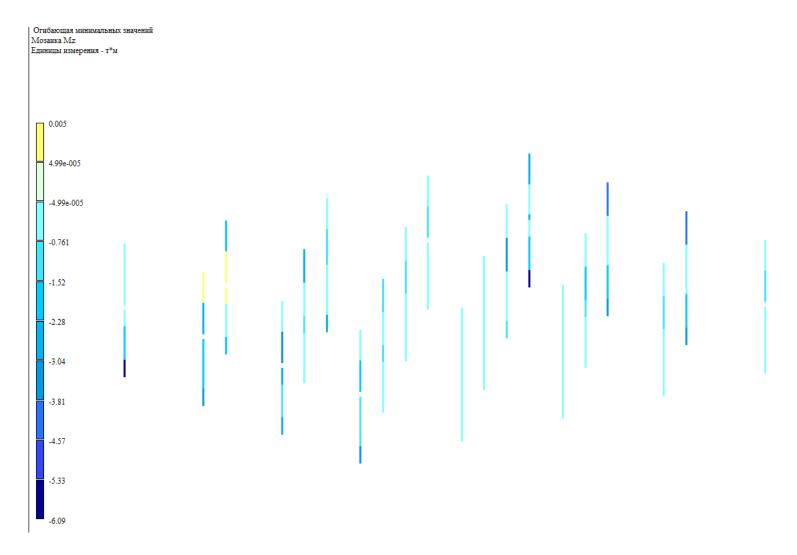


Рисунок 32 - Мозаика напряжений по Mz

8.4 Мозаика максимальных напряжений в колоннах

Отибающая максимальных значений Мозаика N Единицы измерения - т

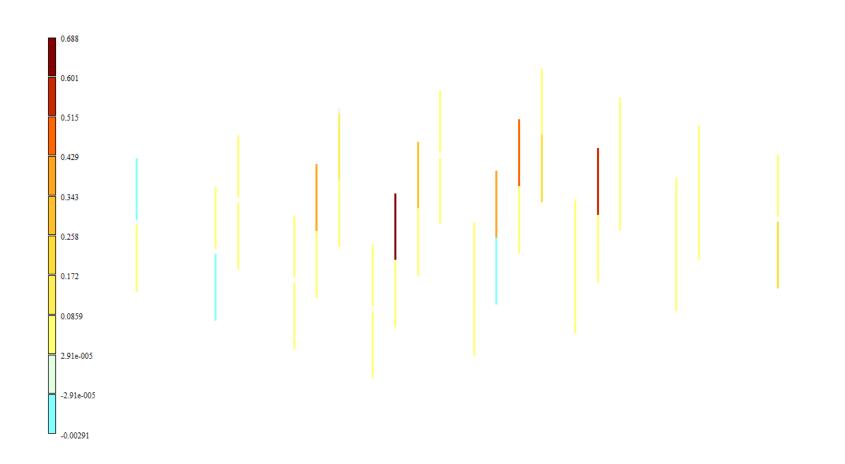


Рисунок 33 - Мозаика напряжений по N

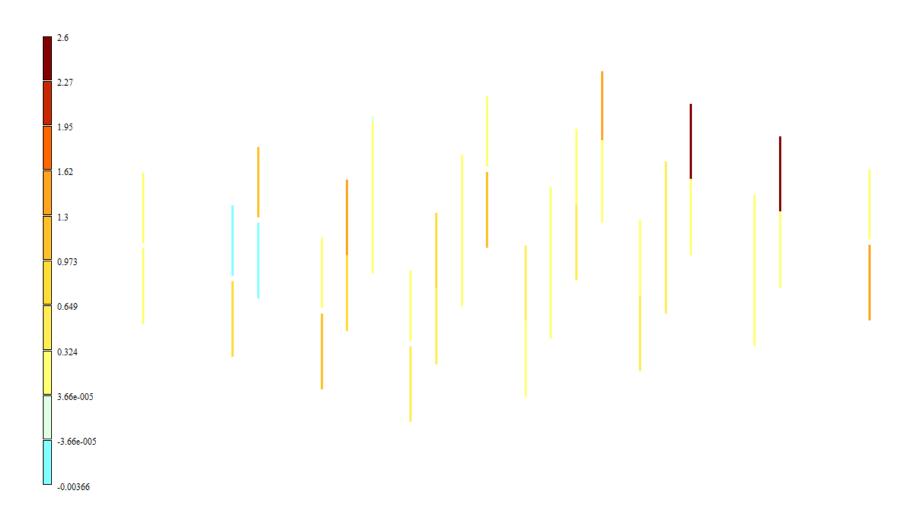
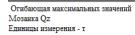



Рисунок 34 - Мозаика напряжений по Qy

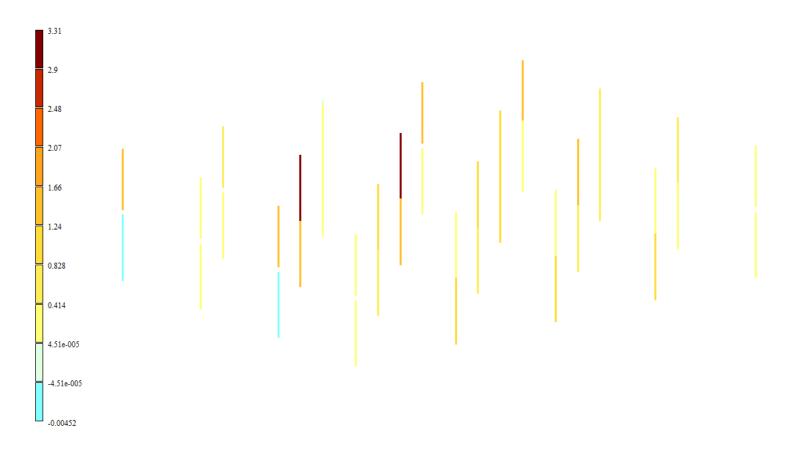


Рисунок 35 - Мозаика напряжений по Qz

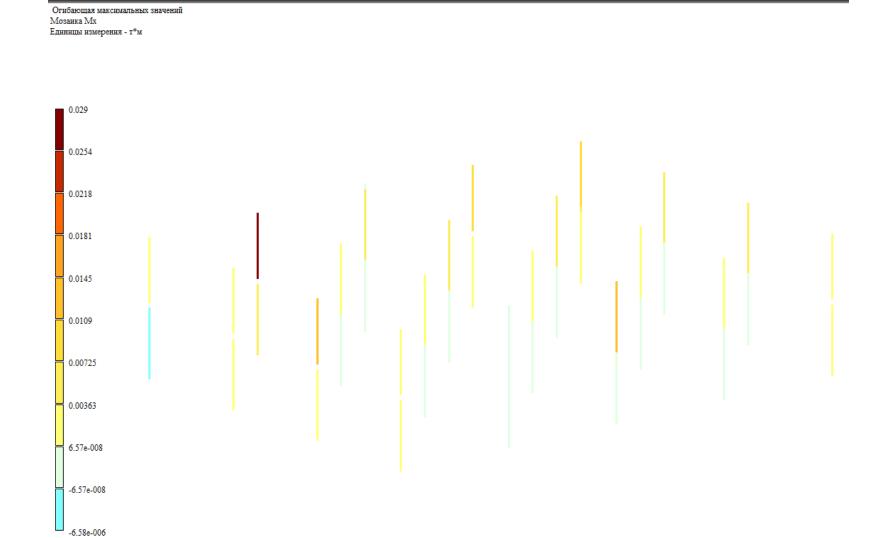
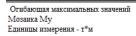



Рисунок 36 - Мозаика напряжений по Мх

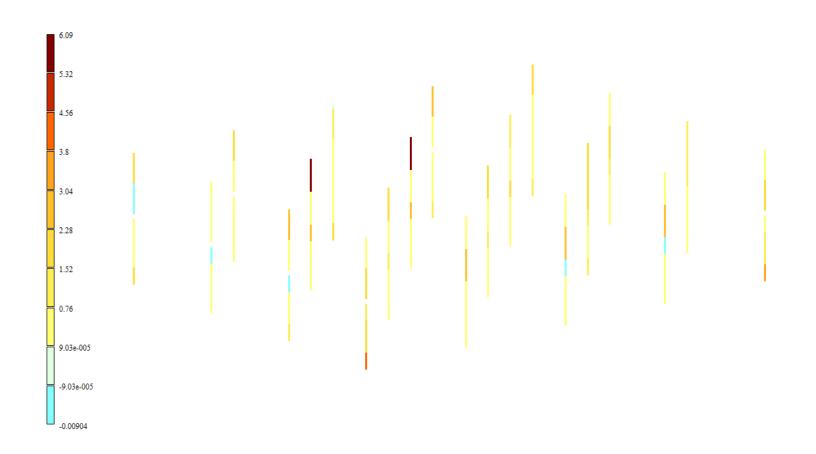


Рисунок 37 - Мозаика напряжений по Му

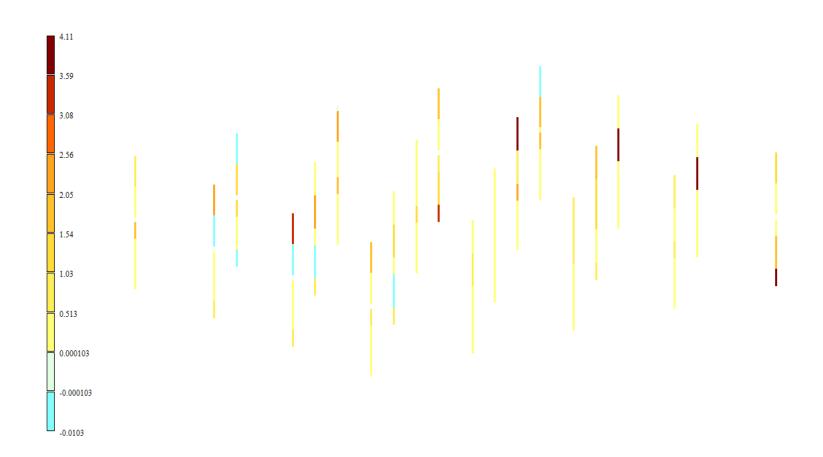


Рисунок 38 - Мозаика напряжений по Mz

8.5 Мозаика минимальных напряжений в балках

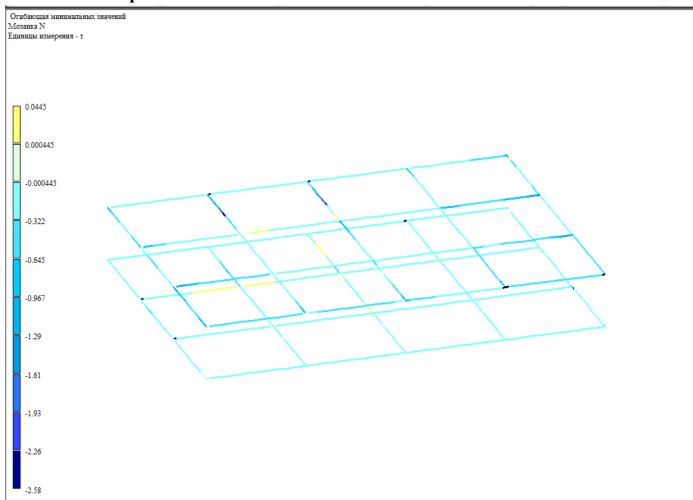


Рисунок 39 - Мозаика напряжений по N

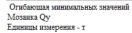


Рисунок 40 - Мозаика напряжений по Qy

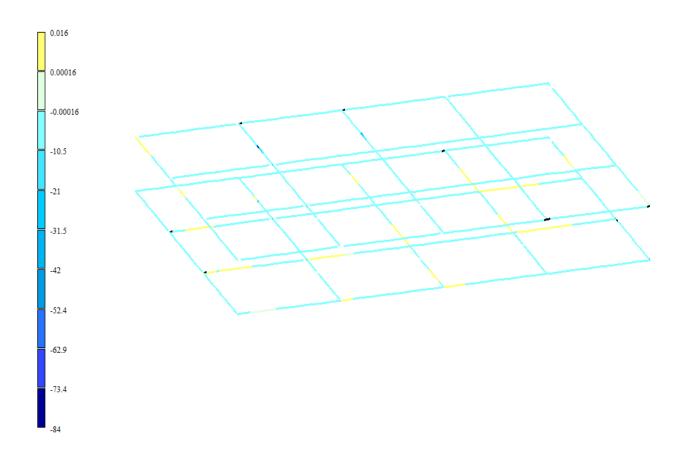


Рисунок 41 - Мозаика напряжений по Qz

Огибающая минимальных значений Мозаика Мх Единицы измерения - т*м

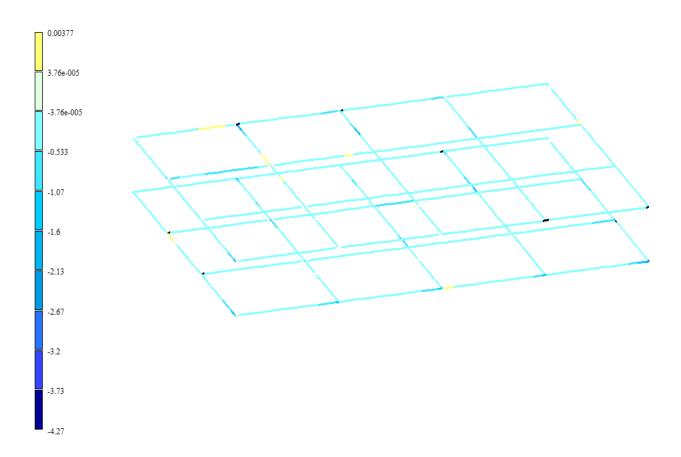


Рисунок 42 - Мозаика напряжений по Мх

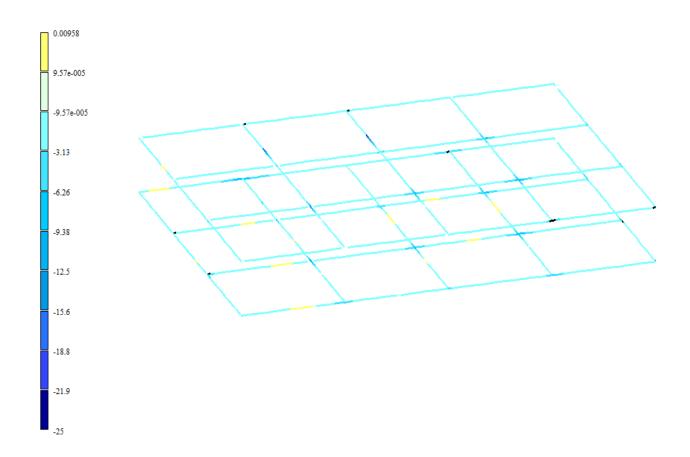
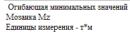



Рисунок 43 - Мозаика напряжений по Му

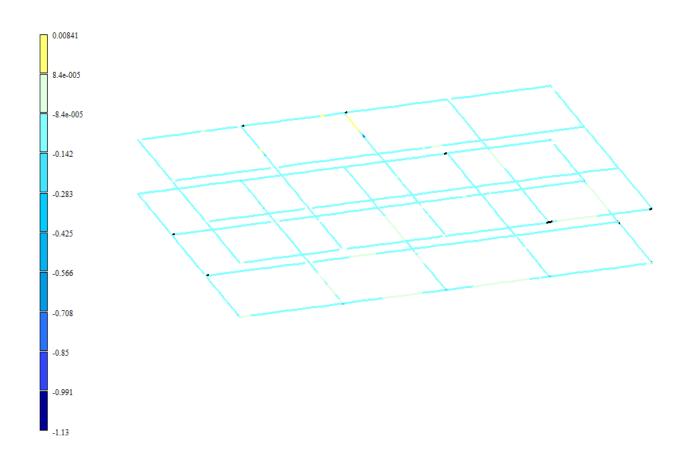


Рисунок 44 - Мозаика напряжений по Mz

8.6 Мозаика максимальных напряжений в балках

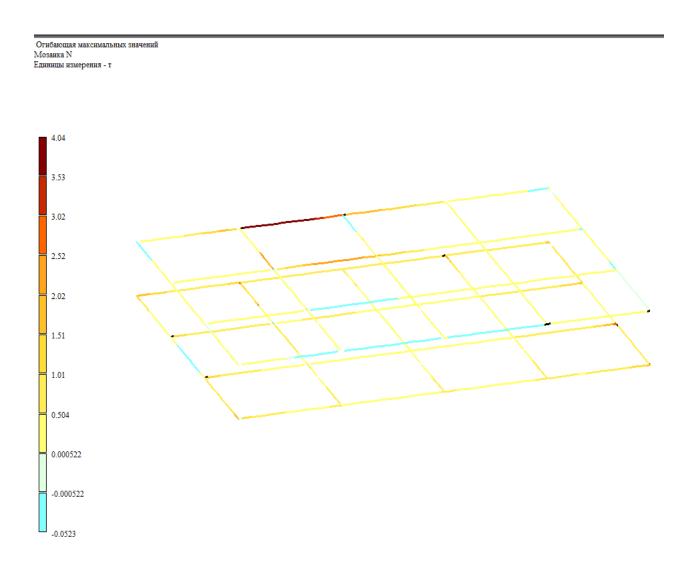
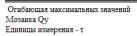



Рисунок 45 - Мозаика напряжений по N

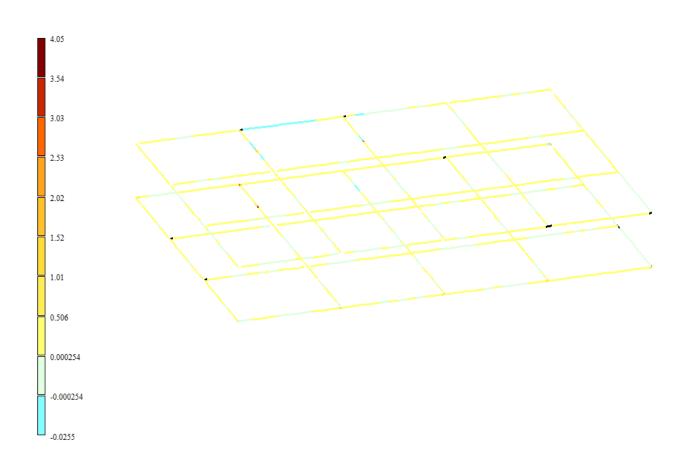


Рисунок 46 - Мозаика напряжений по Qy

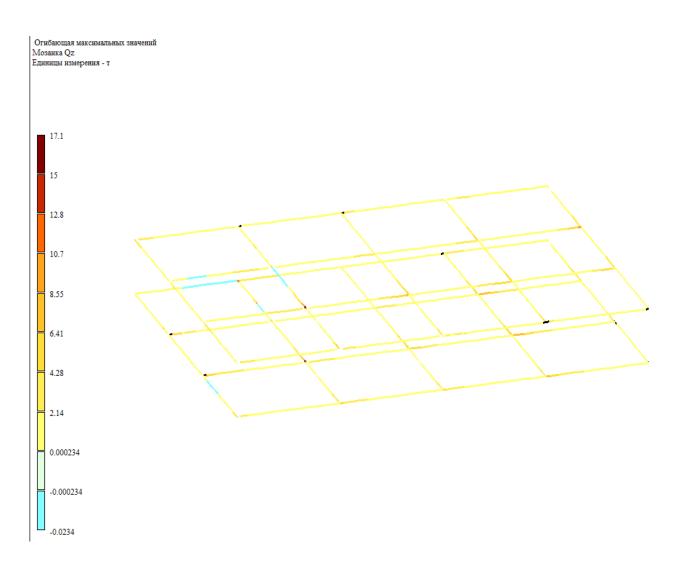


Рисунок 47 - Мозаика напряжений по Qz

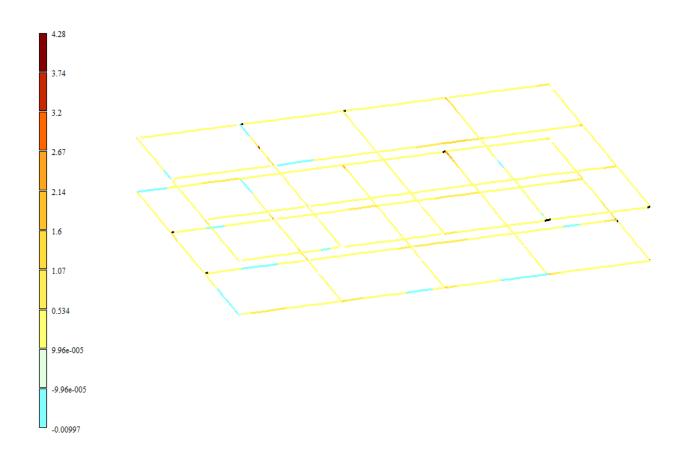


Рисунок 48 - Мозаика напряжений по Мх

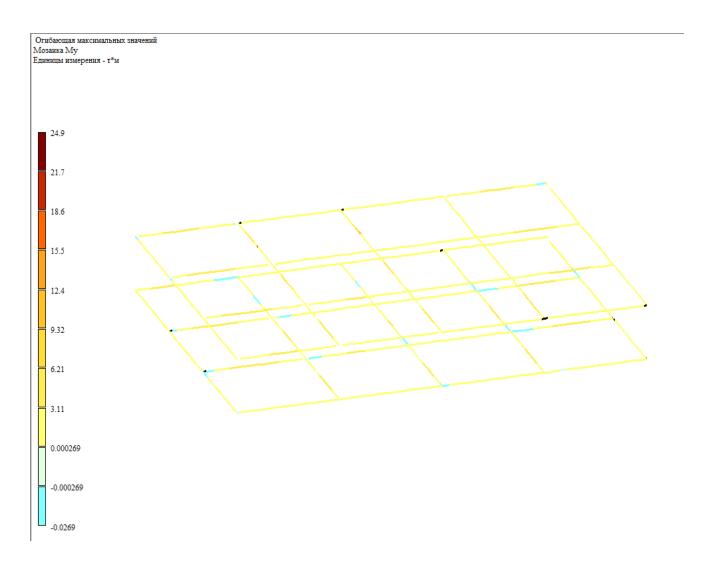


Рисунок 49 - Мозаика напряжений по Му

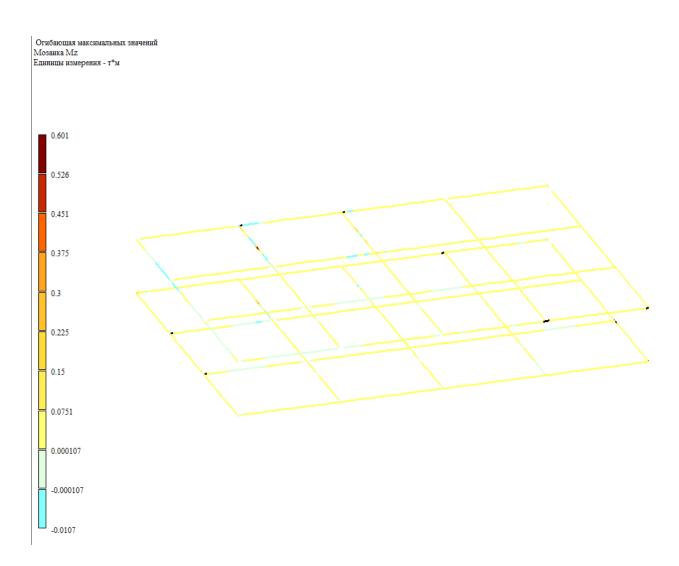


Рисунок 50 - Мозаика напряжений по Mz

9 Результаты конструктивного расчета

Вариант конструирования:Вариант 1: СП 63.13330.2012/2018, СП 15.13330.2012 Расчет по РСН:Импорт из САПФИР:СП 20.13330.2016 (РФ) (по умолчанию) (СП 63.13330.2012/2018) Единицы измерения - см2 Шаг, Диаметр - мм

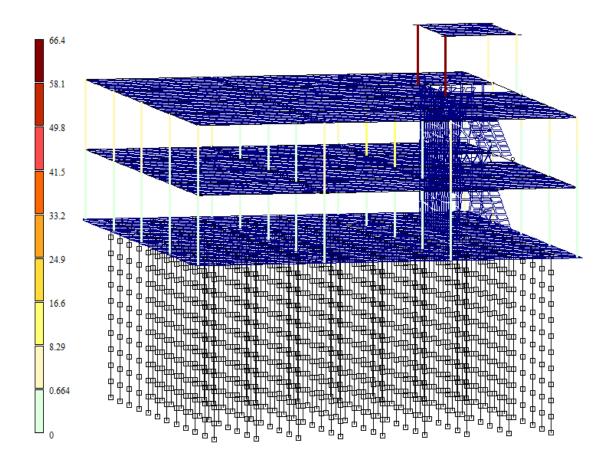


Рисунок 51 – Результат конструктивного расчета

9.1 Результаты конструктивного расчета межэтажного перекрытия

Вариант конструирования:Вариант 1: СП 63.13330.2012/2018, СП 15.13330.2012 Расчет по РСН:Импорт из САПФИР:СП 20.13330.2016 (РФ) (по умолчанию) (СП 63.13330.2012/2018) Единицы измерения - см2/1м Шаг, Диаметр - мм

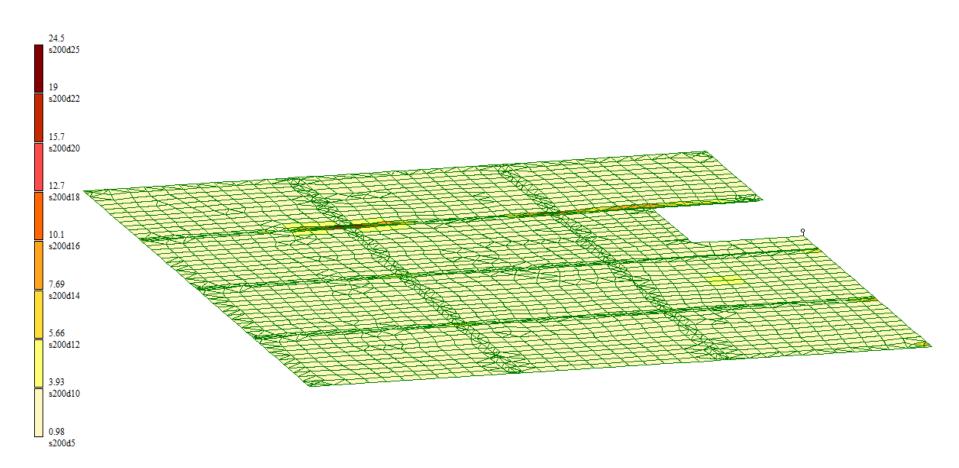


Рисунок 52 - Схема армирования верха плит по оси OX

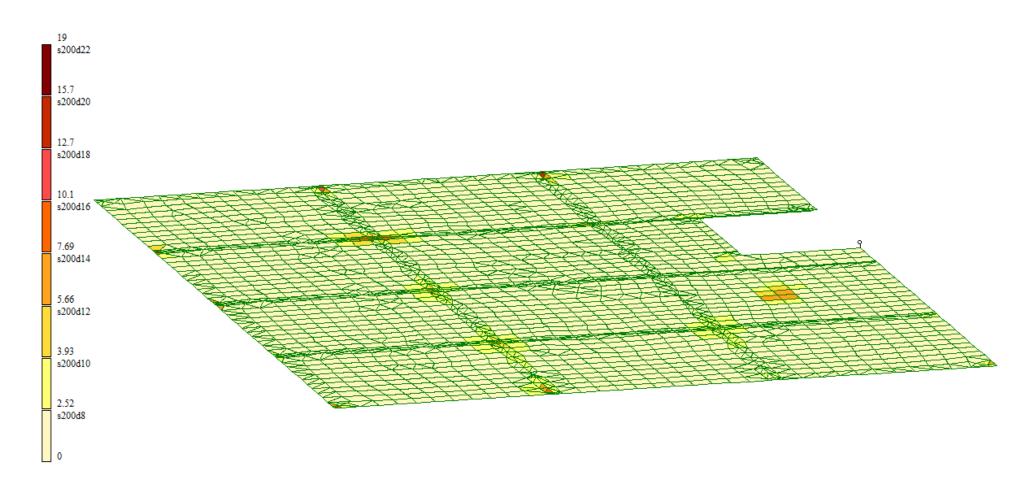


Рисунок 53 - Схема армирования верха плит по оси ОУ

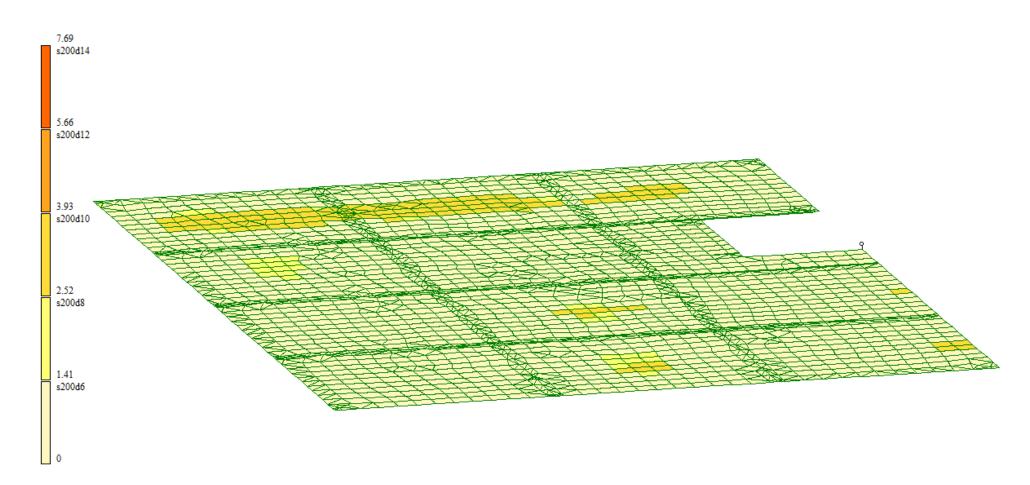


Рисунок 54 - Схема армирования низа плит по оси OX

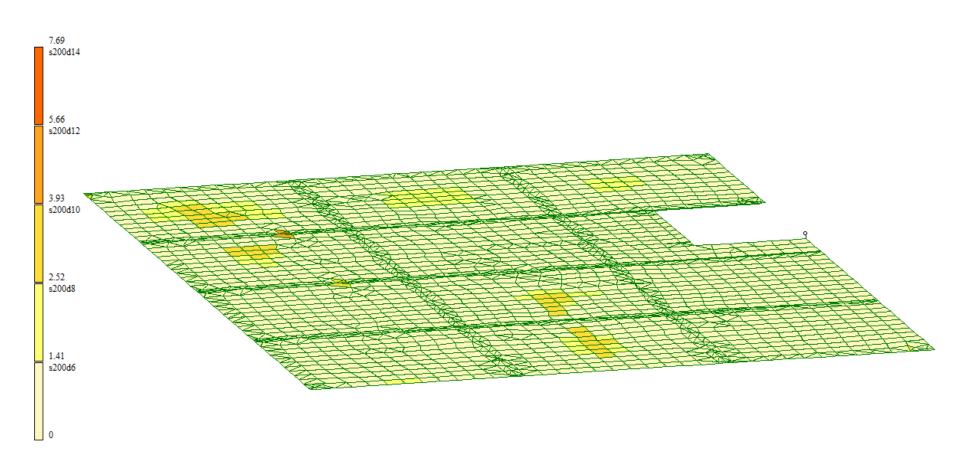


Рисунок 55 - Схема армирования низа плит по оси ОУ

Вывод: для обеспечения необходимой и достаточной прочности при строительстве межэтажного перекрытия, принимаем верхнюю продольную арматуру $5d14\ A400\ c\ A_{sp}=7,69\ cm^2\ (A_{Tp}=7,69\ cm^2)\ c\ шагом\ 200\ мм., а на приопорном участке, величиной 1,2 м. принимаем арматуру <math>6d25\ c\ A_{sp}=24,5\ cm^2\ (A_{Tp}=24,5\ cm^2)\ c\ шагом\ 200\ мм.$

Принимаем верхнюю поперечную арматуру $6d12\ A400\ c\ A_{sp}=7,92\ cm^2\ (A_{Tp}=6,79\ cm^2)\ c$ шагом $200\ мм.$, на приопорном участке, величиной $1,2\ м.$ принимаем арматуру $5d22\ A400\ c\ A_{sp}=19\ cm^2\ (A_{Tp}=19\ cm^2)\ c$ шагом $200\ мм.$

Принимаем нижнюю продольную арматуру – $5d14 A400 c A_{sp} = 7,69 cm^2 (A_{Tp} = 7,69 cm^2) c шагом 200мм.$

Принимаем нижнюю поперечную арматуру – $5d14 A400 c A_{sp} = 7,69 cm^2 (A_{Tp} = 7,69 cm^2) c шагом 200мм$

9.2 Результаты конструктивного расчета колонны 400х400



Рисунок 57 – Схема армирования колонн по OX

Вывод: для обеспечения необходимой и достаточной прочности при строительстве принимаем продольную арматуру $4d25 \text{ c A}_{sp}=19,63 \text{ cm}^2 \text{ (A}_{Tp}=15,5 \text{ cm}^2 \text{) A}400 \text{ c шагом 200мм. Поперечную арматуру принимаем d8 A}400 \text{ c шагом 200 мм. c}$ $A_{sp}=0,503 \text{ cm}^2 \text{ (A}_{Tp}=0,503 \text{ cm}^2 \text{)}$

9.3 Результаты конструктивного расчета балки (400х500)

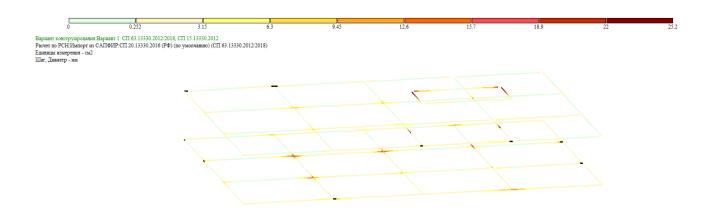


Рисунок 58 – Схема армирования верха балок по OX

Вариант конструирования:Вариант 1: СП 63.13330.2012/2018, СП 15.13330.2012
Расчет по РСН:Импорт из САПФИР-СП 20.13330.2016 (РФ) (по умолчанию) (СП 63.13330.2012/2018)
Единицы измерения - сы2
ППЕ, диамерэ-мм

Рисунок 59 – Схема армирования низа балок по OX

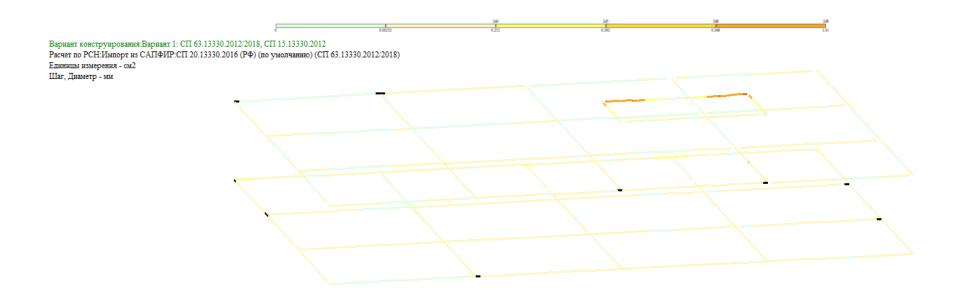


Рисунок 60 – Схема армирования низа балок по ОУ

Вывод: для обеспечения необходимой и достаточной прочности при строительстве принимаем верхнюю продольную арматуру 6d25 A400 с A_{sp} = 29,45 см² (A_{Tp} =25,2 см²), нижнюю продольную – 4d28 A400 с A_{sp} = 24,63 см² (A_{Tp} =22,2 см²), с шагом 200мм., в балках на отметке +8.400 с шагом 100 мм. Поперечную арматуру принимаем 2d8 с A_{sp} = 1,01 см² (с A_{Tp} =1,01 см²) A400 с шагом 100мм.

10 Расчет фундаментов

10.1 Проверка сваи по грунту

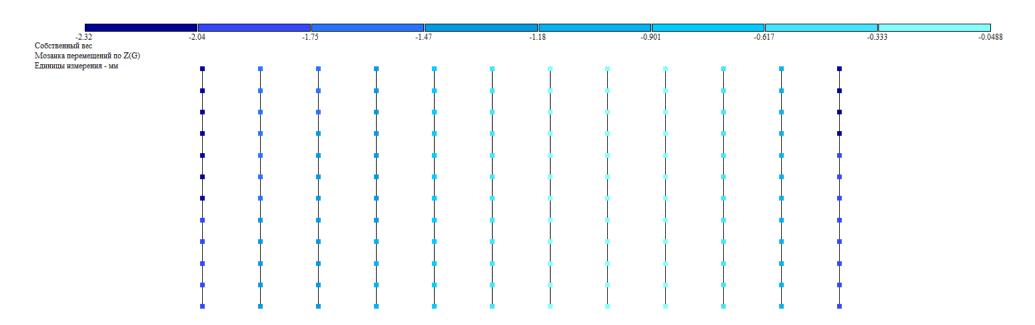


Рисунок 61 – Перемещение фундамента по оси OZ

Вывод: так как рассчитанная осадка фундамента равна 2,32 мм., а предельная осадка $s_u^{max}=15$ мм. по СП 22.13330.2016, то несущая способность по грунту обеспечена.

10.2 Конструктивный расчет сваи

По результатам расчета в ПК Лира САПР получены следующие максимальные значения напряжений в фундаментной плите.

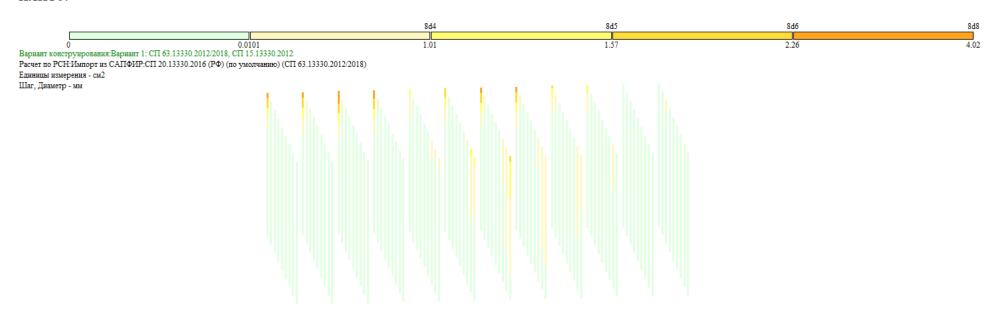
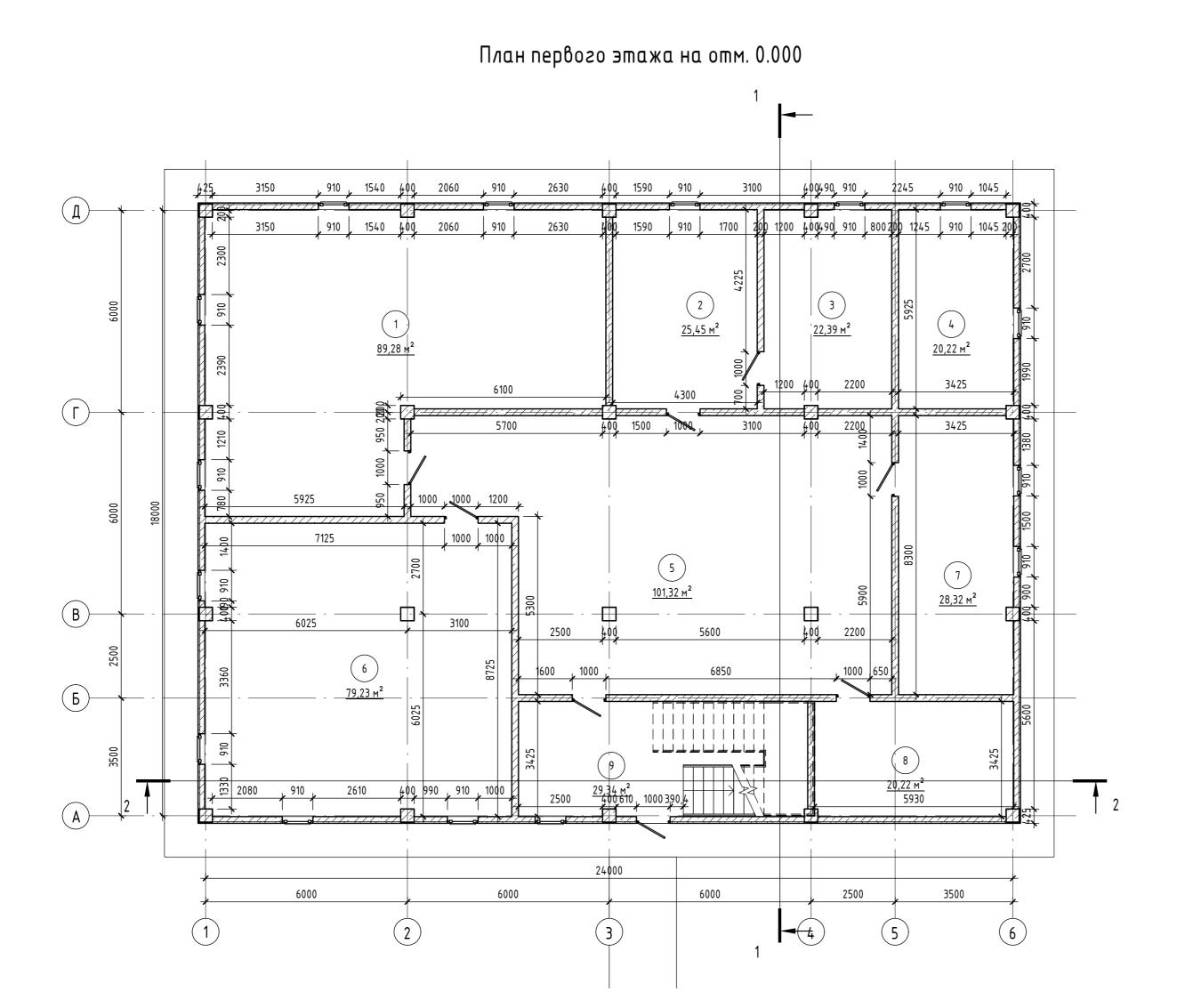


Рисунок 62 – Схема армирования свай

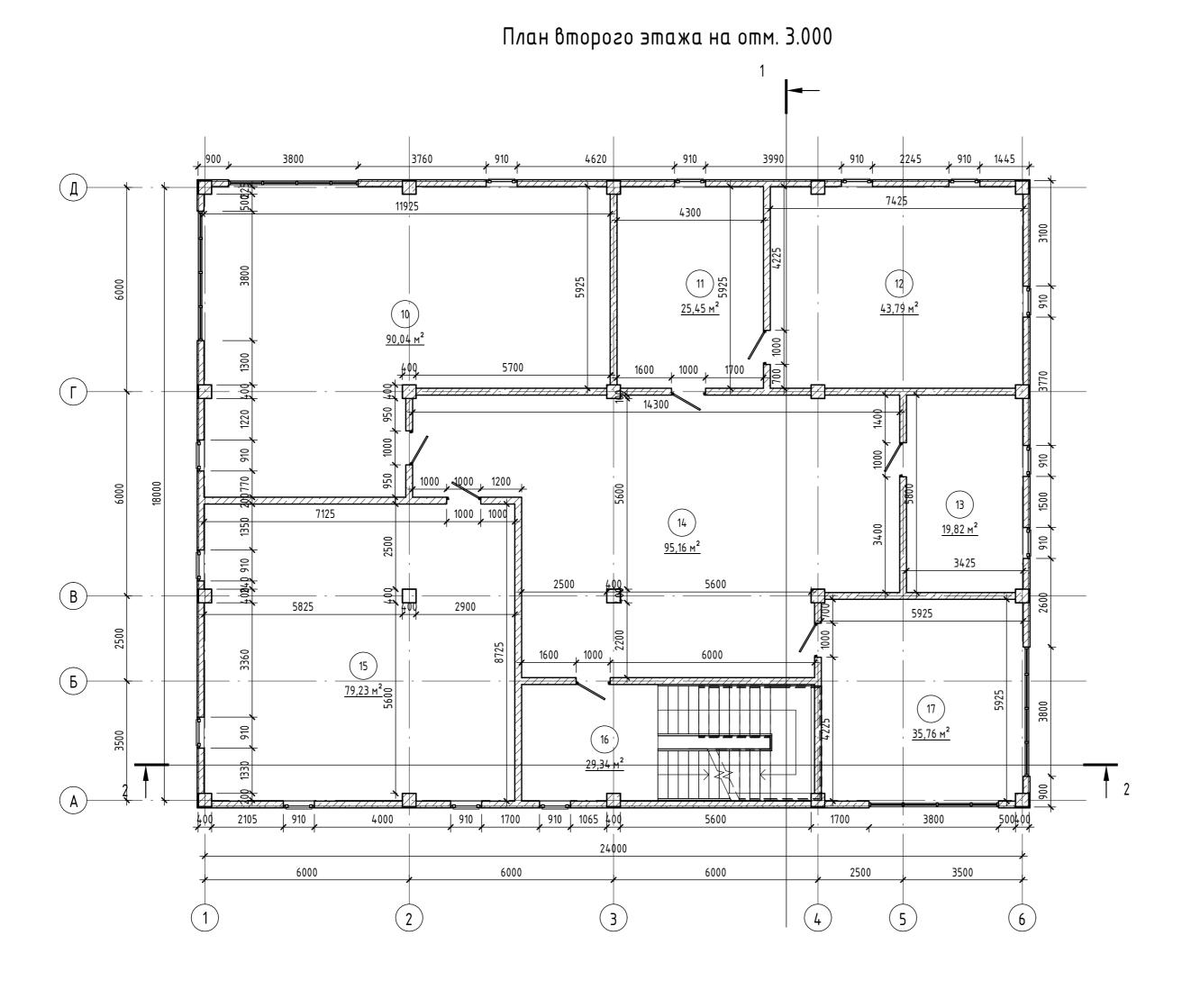

Вывод: несущая способность грунта достаточна, но для обеспечения необходимой и достаточной прочности при строительстве принимаем арматуру 8d8 A400 с шагом 200мм. с A_{sp} =4,02 см² (A_{Tp} =4,02 см²). Поперечную арматуру принимаем d8 A400 с шагом 200 мм. с A_{sp} =0,503 см².

- 1. Настоящий проект разработан согласно техническому заданиюна проектирование, технологическому и архитектурно-технической документацией по проектированию в строительстве:
- СП 20.13330.2016 Нагрузки и воздействия
- СП 63.13330.2018 Бетонные и железобетонные конструкции
- СП 16.13330.2017 Стальные конструкции
- 2. Проект индивидуального офисного здания в г. Хабаровск.
- 3. Здание предназначено для строительсва в зоне со следующими климатическими условиями:
- 1) Климатический район строительства IIIB
- 2) Вес снегового покрова 106 кг/м2 по СП 20.13330.2016 (II снеговой район)
- 3) Скоростной напор ветра 38 кг/м2 по СП.20.13330.2016 (III ветровой район)
- 4) Средняя температура воздуха наиболее холодной пятидневки –31оС
- 3 На участке проводились геологические изаскания. Расчет фундамента сделан для суглинков II типа грунтовых условий по просадочности, нормативная глубина промерзания грунтов 1,9 м.
- 4. Технические решения, принятые в настоящем проекте, соответствуют требованиям экологических, санитарно-гигенических, противопожарных и других норм, действующих на территории РФ и обеспечивают безопасную для жизни и здоровья людей эксплуатацию объекта при соблюдении предусмотренных проектом технических решений.

Ведомость рабочих чертежей основного комплекта

/lucm	Наименование	Примечание
01	Оршпе данняе	
02	План первого этажа	
03	План второго этажа	
05	Фасад А-Д, Фасад Д-А, Фасад 1-6, Фасад 6-1	
06	Разрез 1–1, Разрез 2–2	
07	ЗД Вид	

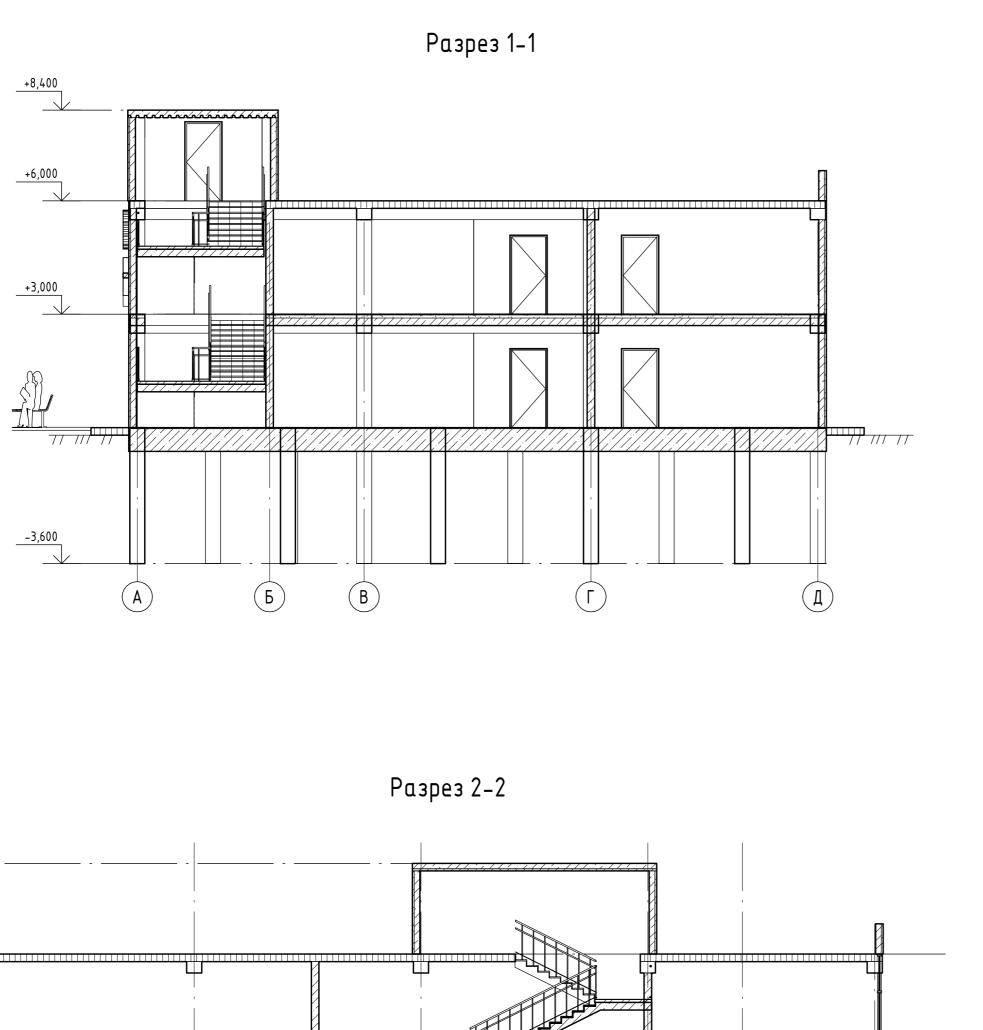
						793.1.2.00.01000KΠ – AP			
Изм.	Кол.уч.	Лucm	№док.	Подп.	Дата	Строительство двухэтажного здания в городе Хабаровск			:
Разрад	•		οβα Ρ.Α				Стадия	/lucm	Листов
Провер. Дронов Н.С		в Н.С			Офисное здание.	У	01		
						Общие данные		КнАГУ	

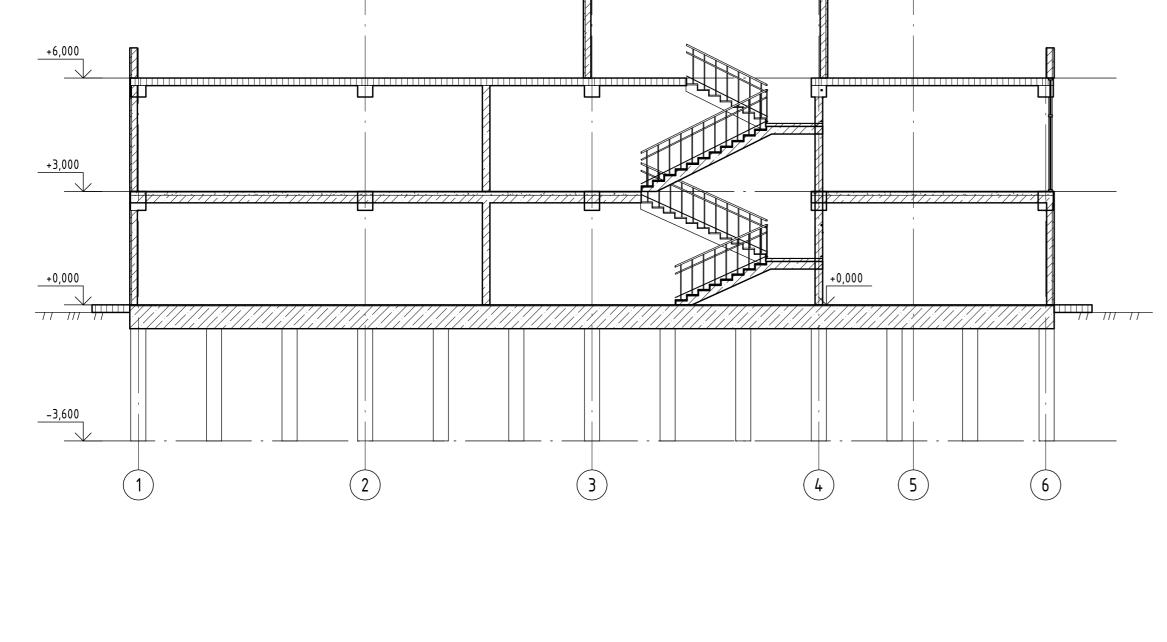


Экспликация помещений на отм. 0.000

Skeimekadem noriedende na omini otovo								
Номер помеще– ния	Наименование	Площадь, м²	Кат. поме- ще- ния					
1	Офис	89,28						
2	Офис	25,45						
3	Офис	22,39						
4	Санитарный узел	20,22						
5	Холл	101,32						
6	Офис	79,23						
7	Офис	28,32						
8	Санузел	20,22						
9	Лестничная клетка	29,34						

						793.1.2.00.01000KΠ – AP			
2М	Кол.уч.	Auem	№док.	Подп.	Дата	Строительство двухэтажного здания в городе Хабаровск			.
зы. зрай			οβα P.A		даша	c		/lucm	Листов
овер	овер. Дронов Н.С				Офисное здание.	Офисное здание. У 02			
				План первого этажа	КнАГУ				

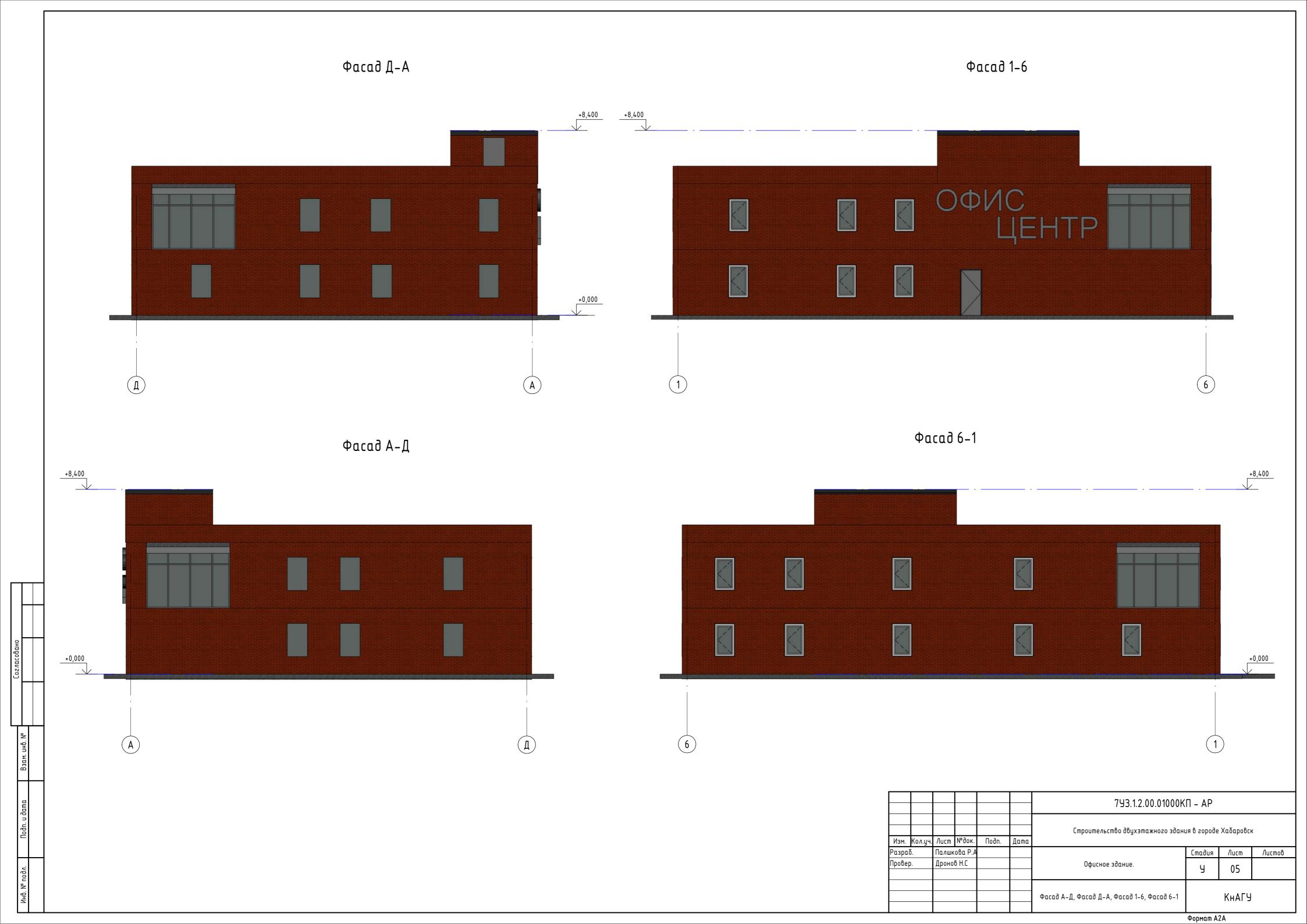

Формат А2A



Экспликация помещений на отм. 3.000

אכ. אנוויוטאכ. אנווייטאכ. אנווייטאכ. אנווייטאכ. אנווייטאכ. אנווייטאכ								
Номер помеще- ния	Наименование	Площадь, м²	Кат. поме- ще- ния					
10	Офис	90,04						
11	Офис	25,45						
12	Офис	43,79						
13	Санитарный узел	19,82						
14	Холл	95,16						
15	Офис	79,23						
16	Лестничная клетка	29,34						
17	Офис	35,76						

						7У3.1.2.00.01000КП – АР			
М.	Кол.уч.	/lucm	№док.	Подп.	Дата	Строительство двухэтажного здания в городе Хабаровск			(
ραδ			οβα Ρ.Α				Стадия	/lucm	Листов
вер		Дроно	в Н.С			Офисное здание.	У	03	
						План второго этажа		КнАГУ	



+8,400

						793.1.2.00.01000KΠ – AP			
3M.	Кол.уч.	Лист	№док.	Подп.	Дата	Строительство двухэтажного здания в городе Хабаровск			ζ
зрай			οβα Ρ.Α				Стадия	/lucm	Листов
овер. Дронов Н.О		в н.с			Офисное здание.		04	-	
					Разрез 1–1, Разрез 2–2	КнАГУ			
							•		

Формат А2А

						793.1.2.00.01000KΠ – AP			
1зм.	Кол.цч.	/lucm	№док.	Подп.	Дата	Строительство двухэтажного здания в городе Хабаровск			(
азра			οβα Ρ.Α		даша		Стадия	/lucm	Листов
рове	оберил. Дронов Н.С				Офисное здание.	У	06		
					ЗД Вид		КнАГУ		

Формат А2А

Министерство науки и высшего образования Российской Федерации

<u>Федеральное государственное бюджетное</u> образовательное учреждение высшего образования «Комсомольский-на-Амуре государственный университет»

	СОГЛАСОВАНО
Декан ФАМТ	Заведующий кафедрой
О.А.Красильникова	В.В.Куриный
«15» 06 2022 г.	«15» 06 2022 г.

АКТ о приемке проекта «Проектирование офисного здания»

«15» 06 2022 г.

Комиссия в составе представителей:

заказчика

- Ю.Н. Чудинов руководитель СПБ
- *В.В. Куриный* Заведующий кафедрой *САПР*,
- О.А.Красильникова декан ФАМТ

исполнителя

- Р.А. Паликова студент группы 7У3-1,
- составила акт о нижеследующем:

Р.А. Палшкова передает результаты проекта «Проектирование офисного здания».

Результаты проекта «Проектирование офисного здания» будут использованы в дальнейшем при разработке выпускной квалификационной работы.

Руководитель СКБ / проекта

Ответственный исполнитель

/ Ю.Н. Чудинов/

/ Р.А. Палшкова /

Таблица учета проектной работы в учебных дисциплинах

Дисциплина	Форма учтенной работы (номер ЛР, КП, КР, РГР, зачет, зачет с оценкой, экзамен)	Преподаватель (дата, ФИО, подпись)	Примечание (ЗУН, полученные при выполнении проекта)
Спецкурс по проектированию строительных конструкций	KII		Знает: руководящие документы по разработке и оформлению технической документации в сфере градостроительной деятельности; требования основных нормативно-технических документов по расчету и проектированию элементов железобетонных конструкций; основные положения расчетов зданий и сооружений, в том числе и на особые нагрузки; Умеет: моделировать расчетные схемы, действующие нагрузки, свойства элементов проектируемого объекта и его взаимодействие с окружающей средой; выполнять расчет и конструирование зданий и сооружений с использованием лицензионных средств автоматизированного проектирования. Владеет: навыками расчетов зданий и сооружений с использованием лицензионных средств автоматизированного проектирования - навыками разработки эскизных и технических проектов в сфере инженерно-технического проектирования для градостроительной деятельности