Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования «Комсомольский-на-Амуре государственный университет»

УТВЕРЖДАЮ

Декан факультета

Энергетики и управления

(наименование факультета) А.С. Гудим

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

«Теория сигналов и систем»

Направление подготовки	11.03.04 Электроника и наноэлектроника
Направленность (профиль) образовательной программы	Проектирование электронных устройств
Квалификация выпускника	Бакалавр
Год начала подготовки (по учебному плану)	2021
Форма обучения	Очная форма
Технология обучения	Традиционная

Курс	Семестр	Трудоемкость, з.е.
3	5	5

Вид промежуточной аттестации	Обеспечивающее подразделение
Экзамен	Кафедра «Промышленная электроника»

Разработчик рабочей программы:

Доцент, Доцент, Кандидат технических наук

Марущенко С.Г

СОГЛАСОВАНО:

Заведующий кафедрой Кафедра «Промышленная электроника»

Любушкина Н.Н.

1 Введение

Рабочая программа и фонд оценочных средств дисциплины «Теория сигналов и систем» составлены в соответствии с требованиями федерального государственного образовательного стандарта, утвержденного приказом Минобрнауки Российской Федерации 927 от 19 сентября 2017 г., и основной профессиональной образовательной программы подготовки «Проектирование электронных устройств» по направлению подготовки «11.03.04 Электроника и наноэлектроника».

Практическая подготовка реализуется на основе:

Профессиональный стандарт 29.007 «СПЕЦИАЛИСТ ПО ПРОЕКТИРОВАНИЮ МИКРО- И НАНОРАЗМЕРНЫХ ЭЛЕКТРОМЕХАНИЧЕСКИХ СИСТЕМ».

Обобщенная трудовая функция: А Разработка принципиальной электрической схемы микроэлектромеханической системы.

НЗ-8 Радиотехнические цепи и сигналы.

Задачи дисциплины	Выработать у студентов системный подход к анализу работы радиотехнических устройств, научить находить отклик устройства на заданное входное воздействие, получать аналитическое и графическое представление амплитудно-частотных, фазочастотных, импульсных и переходных функций радиотехнических систем.
Основные разделы / темы дисциплины	Элементы общей теории сигналов. Спектральные представления сигналов. Энергетические спектры сигналов, принципы корреляционного анализа. Воздействие детерминированных сигналов на линейные стационарные системы. Модулированные сигналы. Сигналы с ограниченным спектром. Нелинейные цепи. Преобразование сигналов в нелинейных цепях.

2 Перечень планируемых результатов обучения по дисциплине (модулю), соотнесенных с индикаторами достижения компетенций

Процесс изучения дисциплины «Теория сигналов и систем» направлен на формирование следующих компетенций в соответствии с $\Phi\Gamma OC$ ВО и основной образовательной программой (таблица 1):

Таблица 1 – Компетенции и индикаторы их достижения

Код и наименование компетенции	Индикаторы достижения	Планируемые результаты обучения по дисциплине		
	Общепрофессиональные			
ОПК-1 Способен использовать положения, законы и методы естественных наук и математики для решения задач инженерной деятель-	ОПК-1.1 Знает фундаментальные законы природы, основные физические и математические законы ОПК-1.2 Умеет применять фи-	Знать современные методы математического описания сигналов и их характеристик; Уметь проводить анализ		

ности	зические законы и математи-	частотных и временных
	ческие методы для решения	свойств детерминирован-
	задач теоретического и при-	ных сигналов;
	кладного характера	
	ОПК-1.3 Владеет навыками	Владеть навыками анализа
	ОПК-1.3 Владеет навыками использования знаний физики	Владеть навыками анализа процессов в радиотехниче-
	* *	
	использования знаний физики	процессов в радиотехниче-

3 Место дисциплины (модуля) в структуре образовательной программы

Дисциплина «Теория сигналов и систем» изучается на 3 курсе, 5 семестре.

Дисциплина входит в состав блока 1 «Дисциплины (модули)» и относится к базовой части.

Для освоения дисциплины необходимы знания, умения, навыки и / или опыт практической деятельности, сформированные в процессе изучения дисциплин / практик: «Математика», «Физика», «Интегральное исчисление в теории функции комплексных переменных», «Физический эксперимент», «Теория вероятностей и математическая статистика», «Электрические цепи», «Физические основы электроники».

Дисциплина «Теория сигналов и систем» частично реализуется в форме практической подготовки.

Дисциплина «Теория сигналов и систем» в рамках воспитательной работы направлена на формирование у обучающихся активной гражданской позиции, уважения к правам и свободам человека, знания правовых основ и законов, воспитание чувства ответственности или умения аргументировать, самостоятельно мыслить, развивает творчество, профессиональные умения или творчески развитой личности, системы осознанных знаний, ответственности за выполнение учебно-производственных заданий и т.д.

4 Объем дисциплины (модуля) в зачетных единицах с указанием количества академических часов, выделенных на контактную работу обучающихся с преподавателем (по видам учебных занятий) и на самостоятельную работу обучающихся

Общая трудоемкость (объем) дисциплины составляет 5 з.е., 180 акад. час. Распределение объема дисциплины (модуля) по видам учебных занятий представлено в таблице 2.

Таблица 2 – Объем дисциплины (модуля) по видам учебных занятий

I worm do a come du distribuir (modification) no and min i to come a come distribuir (modification) no and min i to com	
Объем дисциплины	Всего академических часов
Общая трудоемкость дисциплины	180
Контактная аудиторная работа обучающихся с преподавателем (по видам учебных занятий), всего	56
В том числе:	
занятия лекционного типа (лекции и иные учебные занятия, предусматривающие преимущественную передачу учебной информации педагогическими работниками), в том числе в форме практической подготовки:	22

занятия семинарского типа (семинары, практические занятия, практикумы, лабораторные работы, коллоквиумы и иные аналогичные занятия), в том числе в форме практической подготовки:	34
Самостоятельная работа обучающихся и контактная работа, включающая групповые консультации, индивидуальную работу обучающихся с преподавателями (в том числе индивидуальные консультации); взаимодействие в электронной информационно-образовательной среде вуза	89
Промежуточная аттестация обучающихся – Экзамен	35

5 Содержание дисциплины (модуля), структурированное по темам (разделам) с указанием отведенного на них количества академических часов и видов учебной работы

Таблица 3 – Структура и содержание дисциплины (модуля)

	Виды учебной работы, включая самосто-			
	ятельную работу обучающихся и трудо-			
	емкость (в часах)			
	Контакти	ная работа пр	еподава-	CPC
Наименование разделов, тем и содержание ма-	теля	с обучающи	мися	
териала	Лекции	Семинар-	Лабора-	
		ские	торные	
		(практи-	занятия	
		ческие		
		занятия)		
Раздел 1 Элементы общей теории сигналов				
Тема 1.1 Классификация радиотехнических				
сигналов. Динамическое представление сигна-	1			
лов.				
Тема 1.2 Геометрические методы в теории	1			
сигналов. Теория ортогональных сигналов.	1			
Математические модели сигналов. Геометри-		2		
ческие методы в теории сигналов.		2		
Способы динамического представления сигна-				
лов. Определение угла между элементами ли-			2*	
нейного пространства сигналов.				
Изучение теоретических разделов дисциплины,				
подготовка к занятиям семинарского типа, вы-				10
полнение проверочной работы				
Раздел 2 Спектральные представления сиг-				
налов.				
Тема 2.1 Периодические сигналы и ряды				
Фурье. Спектральный анализ непериодических	1			
сигналов. Преобразование Фурье.				
Тема 2.2 Основные свойства преобразования				
Фурье. Спектральные плотности неинтегриру-	1			
емых сигналов. Преобразование Лапласа.				
Разложение периодического сигнала в ряд		2*		
Фурье*. Обобщенная формула Рэлея.				

	Виды учебной работы, включая са ятельную работу обучающихся и емкость (в часах)			
Наименование разделов, тем и содержание ма-		ная работа пр с обучающи		CPC
териала	Лекции	Семинар-	Лабора-	
Териала	лскции	ские	-	
			торные	
		(практи-	занятия	
		ческие		
Oppositional approximation with the properties with		занятия)		
Определение спектральных плотностей импульсов с использованием преобразования			2*	
Фурье*.			2	
Изучение теоретических разделов дисциплины,				
подготовка к занятиям семинарского типа, вы-				10
полнение проверочной работы				
Раздел 3 Энергетические спектры сигналов,				
принципы корреляционного анализа.				
Тема 3.1 Взаимная спектральная плотность	1			
сигналов. Корреляционный анализ сигналов.	1			
Тема 3.2 Автокорреляционная функция дис-				
кретного сигнала. Взаимокорреляционная	1			
функция двух сигналов.				
Автокорреляционная функция. Функция вза-		2		
имной корреляции.		2		
Энергетические спектры. Дискретная АКФ;			O de	
сигналы Баркера*.			2*	
Изучение теоретических разделов дисциплины,				
подготовка к занятиям семинарского типа, вы-				10
полнение проверочной работы				
Раздел 4 Воздействие детерминированных				
сигналов на линейные стационарные си-				
стемы.				
Тема 4.1 Физические системы и их математи-				
ческие модели. Основные характеристики ли-	1			
нейных стационарных систем. Линейные ди-	1			
намические системы.				
Тема 4.2 Спектральный метод анализа линей-				
ных стационарных систем. Операторный ме-	1			
тод анализа линейных стационарных систем.				
Дифференциальные уравнения линейных це-				
пей, собственные колебания. Математические		2*		
модели линейных стационарных систем*.				
Импульсная характеристика. Интеграл		1 4		
Дюамеля*.		1*		
Определение частотного коэффициента пере-				
дачи цепи. Определение передаточной функ-			2*	
ции линейной стационарной системы.*				
Изучение теоретических разделов дисциплины,				
подготовка к занятиям семинарского типа, вы-				10
полнение проверочной работы				

		бной работы	,	
	ятельную работу обучающихся и трудо- емкость (в часах)			
	Контактная работа преподава-			CPC
именование разделов, тем и содержание ма-		тая расота пр с обучающи		CIC
териала	Лекции	Семинар-	Лабора-	
		ские	торные	
		(практи-	занятия	
		ческие		
		занятия)		
Тема 5.1 Сигналы с амплитудной модуляцией.				
Амплитудная модуляция при сложном моду-	1			
лирующем сигнале.				
Тема 5.2 Сигналы с угловой модуляцией.				
Спектральное представление сигналов с угло-	1			
вой модуляцией. Сигналы с внутриимпульс-	1			
ной частотной модуляцией.				
Частотно-модулированные и фазомодулиро-				
ванные колебания. Спектральное представле-		3		
ние ЛЧМ-сигнала с большой базой.				
Амплитудно-модулированные колебания*.			2*	
Изучение теоретических разделов дисциплины,				
подготовка к занятиям семинарского типа, вы-				15
полнение проверочной работы				
Раздел 6 Сигналы с ограниченным спек-				
тром.				
Тема 6.1 Математические модели сигналов с	1			
ограниченным спектром.	1			
Тема 6.2 Теорема Котельникова.	1			
Тема 6.3 Узкополосные сигналы.	1			
Тема 6.4 Физическая огибающая узкополосно-	1			
го сигнала.	1			
Тема 6.5 Аналитический сигнал.	1			
Тема 6.6 Преобразование Гильберта.	1			
Математическое описание сигналов с ограни-				
ченным спектром. Математическое описание		3*		
аналитического сигнала. Математическое опи-		3		
сание узкополосных сигналов*.				
Представление сигналов рядом Котельникова.				
Преобразование Гильберта для узкополосного		3*		
сигнала. Вычисление огибающей, полной фа-		3		
зы и мгновенной частоты.				
Изучение теоретических разделов дисциплины,				
подготовка к занятиям семинарского типа, вы-				15
полнение проверочной работы				
Раздел 7 Преобразование сигналов в нели-				
нейных электрических цепях.				
Тема 7.1 Безынерционные нелинейные преоб-	1			
разования.	1			
Тема 7.2 Спектральный состав тока в безы-	1			
нерционном нелинейном элементе при гармо-				

	Виды учебной работы, включая самостоятельную работу обучающихся и трудоемкость (в часах)			
	Контакти	ная работа пр	еподава-	CPC
Наименование разделов, тем и содержание ма-	теля с обучающимися			
териала	Лекции	Семинар-	Лабора-	
		ские	торные	
		(практи-	занятия	
		ческие		
		занятия)		
ническом внешнем воздействии.				
Тема 7.3 Нелинейные резонансные усилители	1			
и умножители частоты.	1			
Тема 7.4 Безынерционные нелинейные преоб-				
разования суммы нескольких гармонических	1			
сигналов.				
Тема 7.5 Получение модулированных радио-	1			
сигналов.	1			
Тема 7.6 Амплитудное, фазовое и частотное	1			
детектирование.	1			
Принцип работы нелинейного резонансного				
усилителя. Бигармоническое воздействие на		2*		
нелинейный элемент со степенной характери-		Σ		
стикой *.				
Получение модулированных колебаний, по-				
строение сквозной модуляционной характери-		2		
стики. Диодный детектор АМ-сигналов.				
Способы описания характеристик нелинейных				
элементов. Преобразование сигнала в безы-			2*	
нерционном нелинейном элементе*.				
Изучение теоретических разделов дисциплины,				
подготовка к занятиям семинарского типа, вы-				18
полнение проверочной работы				
Индивидуальная консультация				1
ИТОГО	22	22	12	89
по дисциплине	44	22	14	07

^{*} реализуется в форме практической подготовки

6 Внеаудиторная самостоятельная работа обучающихся по дисциплине (модулю)

При планировании самостоятельной работы студенту рекомендуется руководствоваться следующим распределением часов на самостоятельную работу (таблица 4):

Таблица 4 – Рекомендуемое распределение часов на самостоятельную работу

Компоненты самостоятельной работы	Количество часов
Изучение теоретических разделов дисциплины	30
Подготовка к занятиям семинарского типа	30
Подготовка и оформление проверочной работы	29
Индивидуальная консультация	1

7 Оценочные средства для проведения текущего контроля и промежуточной аттестации обучающихся по дисциплине (модулю)

Фонд оценочных средств для проведения текущего контроля успеваемости и промежуточной аттестации представлен в Приложении 1.

Полный комплект контрольных заданий или иных материалов, необходимых для оценивания результатов обучения по дисциплине (модулю), практике хранится на кафедре-разработчике в бумажном и электронном виде.

8 Учебно-методическое и информационное обеспечение дисциплины (модуля)

8.1 Основная литература

- 1) Баскаков, С.И. Радиотехнические цепи и сигналы: учебник для вузов / С. И. Баскаков. 3-е изд., перераб. и доп. М.: Высшая школа, 2000. 464с. (чз-1экз аб-53экз)
- 2) Астайкин, А. И. Радиотехнические цепи и сигналы. Том 1: учебное пособие / А. И. Астайкин, А. П. Помазков. Саров: Российский федеральный ядерный центр ВНИИЭФ, 2010. 344 с. ISBN 978-5-9515-0142-4. Текст: электронный // Электронно-библиотечная система IPR BOOKS: [сайт]. URL: https://www.iprbookshop.ru/18444.html (дата обращения: 25.11.2021). Режим доступа: для авторизир. пользователей.
- 3) Астайкин, А. И. Радиотехнические цепи и сигналы. Том 2: учебное пособие / А. И. Астайкин, А. П. Помазков. Саров: Российский федеральный ядерный центр ВНИИЭФ, 2010. 360 с. ISBN 978-5-9515-0147-9. Текст: электронный // Электронно-библиотечная система IPR BOOKS: [сайт]. URL: https://www.iprbookshop.ru/18445.html (дата обращения: 25.11.2021). Режим доступа: для авторизир. пользователей
- 4) Радиотехнические цепи и сигналы / Баскей В.Я., ВасюковВ.Н., МеренковВ.М. и др. Новосибирск: НГТУ, 2008. 168 с.: ISBN 978-5-7782-1102-5. Текст: электронный. // Электронно-библиотечная система: ZNANIUM.COM [сайт] URL: https://znanium.com/catalog/product/546271 (дата обращения: 25.11.2021). Режим доступа: по подписке.

8.2 Дополнительная литература

- 1) Яковлев, А. Н. Основы теории сигналов в примерах, упражнениях и задачах / Яковлев А.Н. Новосибирск: НГТУ, 2012. 472 с.: ISBN 978-5-7782-1995-3. Текст : электронный// электронно-библиотечная система. ZNANIUM.COM [сайт]: URL: https://znanium.com/catalog/product/558735 (дата обращения: 25.11.2021). Режим доступа: по подписке.
- 2) Каратаева, Н. А. Радиотехнические цепи и сигналы. Часть 1: учебное пособие / Н. А. Каратаева. Томск: Томский государственный университет систем управления и радиоэлектроники, 2012. 260 с. Текст: электронный // электронно-библиотечная система IPR BOOKS: [сайт]. URL: https://www.iprbookshop.ru/72172.html (дата обращения: 25.11.2021). Режим доступа: для авторизир. пользователей.
- 3) Кориков, А. М. Теория систем и системный анализ: учебное пособие / А. М. Кориков, С. Н. Павлов. Москва: ИНФРА-М, 2019. 288 с. (Высшее образование: Бакалавриат). ISBN 978-5-16-005770-5. Текст: электронный // электронно-библиотечная система ZNANIUM.COM [сайт]: URL: https://znanium.com/catalog/product/994445 (дата обращения: 25.11.2021). Режим доступа: по подписке.
- 4) Радиотехнические цепи и сигналы. Лабораторный практикум: учебное пособие / В. Я. Баскей, В. М. Меренков, Д. О. Соколова, А. Н. Яковлев; под редакцией А. Н. Яко-

влев. — Новосибирск: Новосибирский государственный технический университет, 2014. — 113 с. — ISBN 978-5-7782-2395-0. — Текст: электронный // Электронно-библиотечная система IPR BOOKS: [сайт]: — URL: https://www.iprbookshop.ru/45154.html (дата обращения: 25.11.2021). — Режим доступа: для авторизир. пользователей.

8.3 Методические указания для студентов по освоению дисциплины (при наличии)

- 1) Марущенко С.Г. Теория сигналов и систем: Учеб. пособие./ С.Г. Марущенко Комсомольск-на-Амуре: Гос. образовательное учреждение высшего профессионального образования «Комсомольский-на-Амуре гос. техн. ун-т», 2006. 89 с.
- 2) Теория сигналов и систем: рабочая программа, методические указания и контрольные задания / сост. С.Г. Марущенко. Комсомольск-на-Амуре: ФГБОУ ВПО «КнАГТУ», 2015.-76

8.4 Современные профессиональные базы данных и информационные справочные системы, используемые при осуществлении образовательного процесса по дисциплине

- 1) ZNANIUM.COM: электронно-библиотечная система: сайт. Москва, 2011. URL:http://www.znanium.com (дата обращения: 15.06.2021). Режим доступа: по подписке.
- 2) IPRbooks: электронно-библиотечная система: сайт. Саратов, 2018. URL: https://www.iprbookshop.ru (дата обращения: 15.06.2021). Режим доступа: по подписке.

8.5 Перечень ресурсов информационно-телекоммуникационной сети «Интернет», необходимых для освоения дисциплины (модуля)

- 1) СИГНАЛЫ и СИСТЕМЫ. Лекции и практикум на ПК. / Персональный сайт Давыдова А.В. // URL:http://geoin.org/textbook/index.html (дата обращения: 15.06.2021). Режим доступа: свободный.
- 2) Единое окно доступа к информационным ресурсам : сайт. Москва, 2005. URL: http://window.edu.ru (дата обращения: 15.06.2021).
- 3) Библиотека ИНИТ КнАГУ: сайт. Комсомольск-на-Амуре, 2012. URL: http://initkms.ru/library/main (дата обращения: 15.06.2021).

8.6 Лицензионное и свободно распространяемое программное обеспечение, используемое при осуществлении образовательного процесса по дисциплине

Таблица 5 – Перечень используемого программного обеспечения

Наименование ПО	Реквизиты / условия использования			
Microsoft Imagine Premium	Лицензионный договор АЭ223 №008/65 от			
	11.01.2019			
OpenOffice	Свободная лицензия, условия использования по			
	ссылке: https://www.openoffice.org/license.html			
Электронная система моделирова-	http://www.ti.com/tool/TINA-TI# свободный доступ.			
ния TINA-TI компаний Texas				
Instruments и DesignSoft.				
Mathcad Education	Договор № 106-АЭ120 от 27.11.2012			

9 Организационно-педагогические условия

Организация образовательного процесса регламентируется учебным планом и расписанием учебных занятий. Язык обучения (преподавания) - русский. Для всех видов аудиторных занятий академический час устанавливается продолжительностью 45 минут.

При формировании своей индивидуальной образовательной траектории обучающийся имеет право на перезачет соответствующих дисциплин и профессиональных модулей, освоенных в процессе предшествующего обучения, который освобождает обучающегося от необходимости их повторного освоения.

9.1 Образовательные технологии

Учебный процесс при преподавании курса основывается на использовании традиционных, инновационных и информационных образовательных технологий. Традиционные образовательные технологии представлены лекциями и семинарскими (практическими) занятиями. Инновационные образовательные технологии используются в виде широкого применения активных и интерактивных форм проведения занятий. Информационные образовательные технологии реализуются путем активизации самостоятельной работы студентов в информационной образовательной среде.

9.2 Занятия лекционного типа

Лекционный курс предполагает систематизированное изложение основных вопросов учебного плана.

На первой лекции лектор обязан предупредить студентов, применительно к какому базовому учебнику (учебникам, учебным пособиям) будет прочитан курс.

Лекционный курс должен давать наибольший объем информации и обеспечивать более глубокое понимание учебных вопросов при значительно меньшей затрате времени, чем это требуется большинству студентов на самостоятельное изучение материала.

9.3 Занятия семинарского типа

Семинарские занятия представляют собой детализацию лекционного теоретического материала, проводятся в целях закрепления курса и охватывают все основные разделы.

Основной формой проведения семинаров является обсуждение наиболее проблемных и сложных вопросов по отдельным темам, а также разбор примеров и ситуаций в аудиторных условиях. В обязанности преподавателя входят: оказание методической помощи и консультирование студентов по соответствующим темам курса.

Активность на семинарских занятиях оценивается по следующим критериям:

- ответы на вопросы, предлагаемые преподавателем;
- участие в дискуссиях;
- выполнение проектных и иных заданий;
- ассистирование преподавателю в проведении занятий.

Ответ должен быть аргументированным, развернутым, не односложным, содержать ссылки на источники.

Доклады и оппонирование докладов проверяют степень владения теоретическим материалом, а также корректность и строгость рассуждений.

Оценивание заданий, выполненных на семинарском занятии, входит в накопленную оценку.

9.4 Самостоятельная работа обучающихся по дисциплине (модулю)

Самостоятельная работа студентов — это процесс активного, целенаправленного приобретения студентом новых знаний, умений без непосредственного участия преподавателя, характеризующийся предметной направленностью, эффективным контролем и оценкой результатов деятельности обучающегося.

Цели самостоятельной работы:

- систематизация и закрепление полученных теоретических знаний и практических умений студентов;
 - углубление и расширение теоретических знаний;
- формирование умений использовать нормативную и справочную документацию, специальную литературу;
- развитие познавательных способностей, активности студентов, ответственности и организованности;
- формирование самостоятельности мышления, творческой инициативы, способностей к саморазвитию, самосовершенствованию и самореализации;
 - развитие исследовательских умений и академических навыков.

Самостоятельная работа может осуществляться индивидуально или группами студентов в зависимости от цели, объема, уровня сложности, конкретной тематики.

Технология организации самостоятельной работы студентов включает использование информационных и материально-технических ресурсов университета.

Контроль результатов внеаудиторной самостоятельной работы студентов может проходить в письменной, устной или смешанной форме.

Студенты должны подходить к самостоятельной работе как к наиважнейшему средству закрепления и развития теоретических знаний, выработке единства взглядов на отдельные вопросы курса, приобретения определенных навыков и использования профессиональной литературы.

9.5 Методические указания для обучающихся по освоению дисциплины

При изучении дисциплины обучающимся целесообразно выполнять следующие рекомендации:

- 1. Изучение учебной дисциплины должно вестись систематически.
- 2. После изучения какого-либо раздела по учебнику или конспектным материалам рекомендуется по памяти воспроизвести основные термины, определения, понятия раздела.
- 3. Особое внимание следует уделить выполнению отчетов по практическим занятиям и индивидуальным комплексным заданиям на самостоятельную работу.
- 4. Вся тематика вопросов, изучаемых самостоятельно, задается на лекциях преподавателем. Им же даются источники (в первую очередь вновь изданные в периодической научной литературе) для более детального понимания вопросов, озвученных на лекции.

При самостоятельной проработке курса обучающиеся должны:

- просматривать основные определения и факты;
- повторить законспектированный на лекционном занятии материал и дополнить его с учетом рекомендованной по данной теме литературы;
- изучить рекомендованную литературу, составлять тезисы, аннотации и конспекты наиболее важных моментов;
 - самостоятельно выполнять задания, аналогичные предлагаемым на занятиях;
 - использовать для самопроверки материалы фонда оценочных средств.

10 Описание материально-технического обеспечения, необходимого для осуществления образовательного процесса по дисциплине (модулю)

10.1 Учебно-лабораторное оборудование

Таблица 6 — Перечень оборудования лаборатории

Аудитория	Наименование аудитории (лаборатории)	Используемое оборудование
211/3	Лаборатория компьютерно-	персональные компьютеры
	го проектирования и моде-	
	лирования	

10.2 Технические и электронные средства обучения

При проведении занятий используется аудитория, оборудованная проектором (стационарным или переносным) для отображения презентаций. Кроме того, при проведении лекций и практических занятий необходим компьютер с установленным на нем браузером и программным обеспечением для демонстрации презентаций.

Самостоятельная работа. Помещения для самостоятельной работы оснащены компьютерной техникой с возможностью подключения к сети «Интернет» и доступом к электронной информационно-образовательной среде КнАГУ:

- читальный зал НТБ КнАГУ;
- компьютерные классы (ауд. 211, 213 корпус № 3).

11 Иные сведения

Методические рекомендации по обучению лиц с ограниченными возможностями здоровья и инвалидов

Освоение дисциплины обучающимися с ограниченными возможностями здоровья может быть организовано как совместно с другими обучающимися, так и в отдельных группах. Предполагаются специальные условия для получения образования обучающимися с ограниченными возможностями здоровья.

Профессорско-педагогический состав знакомится с психолого-физиологическими особенностями обучающихся инвалидов и лиц с ограниченными возможностями здоровья, индивидуальными программами реабилитации инвалидов (при наличии). При необходимости осуществляется дополнительная поддержка преподавания тьюторами, психологами, социальными работниками, прошедшими подготовку ассистентами.

В соответствии с методическими рекомендациями Минобрнауки РФ (утв. 8 апреля 2014 г. N АК-44/05вн) в курсе предполагается использовать социально-активные и рефлексивные методы обучения, технологии социокультурной реабилитации с целью оказания помощи в установлении полноценных межличностных отношений с другими студентами, создании комфортного психологического климата в студенческой группе. Подбор и разработка учебных материалов производятся с учетом предоставления материала в различных формах: аудиальной, визуальной, с использованием специальных технических средств и информационных систем.

Освоение дисциплины лицами с OB3 осуществляется с использованием средств обучения общего и специального назначения (персонального и коллективного использования). Материально-техническое обеспечение предусматривает приспособление аудиторий к нуждам лиц с OB3.

Форма проведения аттестации для студентов-инвалидов устанавливается с учетом индивидуальных психофизических особенностей. Для студентов с ОВЗ предусматривается доступная форма предоставления заданий оценочных средств, а именно:

- в печатной или электронной форме (для лиц с нарушениями опорнодвигательного аппарата);
- в печатной форме или электронной форме с увеличенным шрифтом и контрастностью (для лиц с нарушениями слуха, речи, зрения);
 - методом чтения ассистентом задания вслух (для лиц с нарушениями зрения).

Студентам с инвалидностью увеличивается время на подготовку ответов на контрольные вопросы. Для таких студентов предусматривается доступная форма предоставления ответов на задания, а именно:

- письменно на бумаге или набором ответов на компьютере (для лиц с нарушениями слуха, речи);
- выбором ответа из возможных вариантов с использованием услуг ассистента (для лиц с нарушениями опорно-двигательного аппарата);
 - устно (для лиц с нарушениями зрения, опорно-двигательного аппарата).

При необходимости для обучающихся с инвалидностью процедура оценивания результатов обучения может проводиться в несколько этапов.

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

по дисциплине

«Теория сигналов и систем»

Направление подготовки	11.03.04 Электроника и наноэлектроника
Направленность (профиль) образовательной программы	Проектирование электронных устройств
Квалификация выпускника	Бакалавр
Год начала подготовки (по учебному плану)	2021
Форма обучения	Очная форма
Технология обучения	Традиционная

Курс	Семестр	Трудоемкость, з.е.	
3	5	5	

Вид промежуточной аттестации	Обеспечивающее подразделение
Экзамен	Кафедра «Промышленная электроника»

1 Перечень планируемых результатов обучения по дисциплине (модулю), соотнесенных с индикаторами достижения компетенций

Таблица 1 – Компетенции и индикаторы их достижения

Код и наименование компетенции			
	Общепрофессиональные		
ОПК-1 Способен использовать положения, законы и методы естественных наук и математики для решения задач инженерной деятельности	ОПК-1.1 Знает фундаментальные законы природы, основные физические и математические законы ОПК-1.2 Умеет применять физические законы и математические методы для решения задач теоретического и прикладного характера ОПК-1.3 Владеет навыками использования знаний физики и математики при решении практических задач	Знать современные методы математического описания сигналов и их характеристик; Уметь проводить анализ частотных и временных свойств детерминированных сигналов; Владеть навыками анализа процессов в радиотехнических устройствах.	

Таблица 2 – Паспорт фонда оценочных средств

Контролируемые	Формируемая	Наименование	
разделы (темы)	компетенция	оценочного	Показатели оценки
дисциплины		средства	
Разделы 1 – 7	ОПК-1	Лабораторные работы	Полнота и правильность вы-
			полнения задания
Разделы 1 – 7	ОПК-1	Практические задания Полнота и правильн	
			полнения задания
Разделы 1 – 7	ОПК-1	Проверочная работа	Полнота и правильность
			выполнения задания
Разделы 1 – 7	ОПК-1	Вопросы к экзамену	Полнота и аргументиро-
			ванность ответов

2 Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующие процесс формирования компетенций

Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности, представлены в виде технологической карты дисциплины (таблица 3).

Таблица 3 – Технологическая карта

	Наименова- ние оценоч- ного средства	Сроки выпол- нения	Шкала оценива- ния	Критерии оценивания	
	5 семестр				
	Промежуточная аттестация в форме «Экзамен»				
1	Лабораторная	в течение	5 баллов	5 баллов – студент показал отличные навыки	

	Наименова-	Сроки	Шкала	T.C.
	ние оценоч-	выпол-	оценива-	Критерии
	ного средства	нения	ния	оценивания
	работа 1	семестра		применения полученных знаний и умений при
2	Лабораторная	в течение	5 баллов	решении профессиональных задач в рамках
	работа 2	семестра		усвоенного учебного материала.
3	Лабораторная	в течение	5 баллов	4 балла – студент показал хорошие навыки
	работа 3	семестра		применения полученных знаний и умений при
4	Лабораторная	в течение	5 баллов	решении профессиональных задач в рамках
	работа 4	семестра		усвоенного учебного материала.
5	Лабораторная	в течение	5 баллов	3 балла – студент показал удовлетворительное
	работа 5	семестра	5 6	владение навыками применения полученных
6	Лабораторная	в течение	5 баллов	знаний и умений при решении профессио-
7	работа 6	семестра	5 баллов	нальных задач в рамках усвоенного учебного
'	Практическое задание 1	в течение	3 баллов	материала.
8	Практическое	в течение	5 баллов	0 баллов — студент продемонстрировал недо-
0	задание 2	семестра	3 баллов	статочный уровень владения умениями и навы-
9	Практическое	в течение	5 баллов	ками при решении профессиональных задач в
	задание 3	семестра	o danie	рамках усвоенного учебного материала.
10	Практическое	в течение	5 баллов	
	задание 4	семестра		
11	Практическое	в течение	5 баллов	
	задание 5	семестра		
12	Практическое	в течение	5 баллов	
	задание 6	семестра		
13	Практическое	в течение	5 баллов	
	задание 7	семестра		
14	Практическое	в течение	5 баллов	
1.5	задание 8	семестра		
15	Практическое	в течение	5 баллов	
1.0	задание 9	семестра	<i>5.6</i>	
16	Практическое	в течение	5 баллов	
17	задание 10	семестра	10 баллов	10 Southon Carthaurt Horseagh Carthaurt to Mont Hay
1 /	Проверочная Работа	семестра	10 Gannos	10 баллов – студент показал отличные навыки
	1 40014	семестра		применения полученных знаний и умений при
				решении профессиональных задач в рамках
				усвоенного учебного материала.
				8 баллов – студент показал хорошие навыки
				применения полученных знаний и умений при
				решении профессиональных задач в рамках
				усвоенного учебного материала.
				6 баллов – студент показал удовлетворительное
				владение навыками применения полученных
				знаний и умений при решении профессиональ-
				ных задач в рамках усвоенного учебного матери-
				ала.
				0 баллов – студент продемонстрировал недоста-
				точный уровень владения умениями и навыка-
				ми при решении профессиональных задач в
				рамках усвоенного учебного материала.
Теку	ущий контроль:	-	90 баллов	-
Экза	амен:	-	10 баллов	10 баллов – студент показал отличные навыки
				применения полученных знаний и умений при
				решении профессиональных задач в рамках

	Наименова- ние оценоч- ного средства	Сроки выпол- нения	Шкала оценива- ния	Критерии оценивания
				усвоенного учебного материала. 8 баллов — студент показал хорошие навыки применения полученных знаний и умений при решении профессиональных задач в рамках усвоенного учебного материала. 6 баллов — студент показал удовлетворительное владение навыками применения полученных знаний и умений при решении профессиональных задач в рамках усвоенного учебного материала. 0 баллов — студент продемонстрировал недостаточный уровень владения умениями и навыками при решении профессиональных задач в рамках усвоенного учебного материала.
ИТ	ОГО:	-	100 баллов	

Критерии оценки результатов обучения по дисциплине:

- 0-64 % от максимально возможной суммы баллов «неудовлетворительно» (недостаточный уровень для промежуточной аттестации по дисциплине);
- 65 74 % от максимально возможной суммы баллов «удовлетворительно» (пороговый (минимальный) уровень);
- 75 84 % от максимально возможной суммы баллов «хорошо» (средний уровень);
- 85-100~% от максимально возможной суммы баллов «отлично» (высокий (максимальный) уровень)
 - 3 Типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующие процесс формирования компетенций в ходе освоения образовательной программы

3.1 Задания для текущего контроля успеваемости

Список практических заданий

- 1) Математические модели сигналов. Геометрические методы в теории сигналов.
- 2) Разложение периодического сигнала в ряд Фурье. Обобщенная формула Рэлея.
- 3) Автокорреляционная функция. Функция взаимной корреляции.
- 4) Дифференциальные уравнения линейных цепей, собственные колебания. Математические модели линейных стационарных систем.
 - 5) Импульсная характеристика. Интеграл Дюамеля.
- 6) Частотно-модулированные и фазомодулированные колебания. Спектральное представление ЛЧМ-сигнала с большой базой.
- 7) Математическое описание сигналов с ограниченным спектром. Математическое описание аналитического сигнала. Математическое описание узкополосных сигналов*.
- 8) Представление сигналов рядом Котельникова. Преобразование Гильберта для узкополосного сигнала. Вычисление огибающей, полной фазы и мгновенной частоты.
- 9) Принцип работы нелинейного резонансного усилителя. Бигармоническое воздействие на нелинейный элемент со степенной характеристикой.
- 10) Получение модулированных колебаний, построение сквозной модуляционной характеристики. Диодный детектор АМ-сигналов.

Перечень лабораторных работ

- 1) Способы динамического представления сигналов. Определение угла между элементами линейного пространства сигналов.
 - 2) Определение спектральных плотностей импульсов с использованием преобразо-

вания Фурье.

- 3) Энергетические спектры. Дискретная АКФ; сигналы Баркера.
- 4) Определение частотного коэффициента передачи цепи. Определение передаточной функции линейной стационарной системы.
 - 5) Амплитудно-модулированные колебания.
- 6) Способы описания характеристик нелинейных элементов. Преобразование сигнала в безынерционном нелинейном элементе.

Проверочная работа

«Преобразование сигналов в нелинейных радиотехнических цепях». Задание выдается каждому студенту персонально в начале текущего семестра. Работа состоит из трех практических заданий и направлена на закрепление тем 5,6,7. Исходные данные в соответствии с номером варианта берутся из таблиц методических указаний, размещенных в личном кабинете в разделе УМКД.

Содержание

Работа состоит из пояснительной записки и графической части. Пояснительная записка должна содержать: введение, основную часть (этапы решения заданий и расчеты со всеми пояснениями), заключение и список использованных источников. Основную часть, согласно требованиям технического задания, разбивают на разделы и подразделы, название которых должно соответствовать их основному содержанию.

Пояснительную записку представляют к защите в сброшюрованном виде. Примерный объем пояснительной записки 20-30 с.

Графическая часть должна содержать диаграммы и графики, построенные в ходе выполнения заданий. Все рисунки, графики, схемы выполнять аккуратно карандашом по линейке. Электрические схемы должны быть вычерчены в соответствии с правилами ЕСКД. Следует строго придерживаться установленных буквенных обозначений и наименований электрических величин.

Выполненная работа должна удовлетворять нормативным документам университета, с которыми можно ознакомиться в отделе стандартизации или на сайте университета. Отступления от указанных требований могут служить основанием для возврата работы на исправление.

3.2 Задания для промежуточной аттестации Контрольные вопросы к экзамену

- 1. Понятие несущего колебания, принцип амплитудной модуляции.
- 2. Однотональная амплитудная модуляция, энергетические характеристики АМсигнала.
- 3. Амплитудная модуляция при сложном модулирующем сигнале, амплитудноманипулированные сигналы. Векторная диаграмма АМ-сигнала.
 - 4. Балансная амплитудная модуляция, однополосная амплитудная модуляция.
- 5. Сигналы с угловой модуляцией. Виды угловой модуляции. Однотональные сигналы с угловой модуляцией.
- 6. Спектральное разложение ЧМ- и ФМ-сигналов при малых индексах модуляции, точный анализ спектрального состава сигналов с угловой модуляцией.
- 7. Спектр сигнала с угловой модуляцией при произвольном значении индекса модуляции.
 - 8. Угловая модуляция при негармоническом модулирующем сигнале.
- 9. Сигналы с внутриимпульсной частотной модуляцией. Принцип линейной частотной модуляции (ЛЧМ), спектр прямоугольного ЛЧМ-импульса.
 - 10. ЛЧМ-сигналы с большой базой, автокорреляционная функция ЛЧМ-сигнала.
- 11. Сигналы с ограниченным спектром. Идеальный низкочастотный сигнал, идеальный полосовой сигнал.

- 12. Ортогональные сигналы с ограниченным спектром.
- 13. Построение ортонормированного базиса, ряд Котельникова, теорема Котельникова.
- 14. Аппаратная реализация синтеза сигнала, представленного рядом Котельникова, оценка ошибки при аппроксимации произвольного сигнала рядом Котельникова.
 - 15. Размерность пространства сигналов с ограниченным спектром.
- 16. Узкополосные сигналы. Математическая модель узкополосного сигнала, комплексное представление узкополосных сигналов.
- 17. Физическая огибающая, полная фаза и мгновенная частота. Свойства физической огибающей узкополосного сигнала.
- 18. Свойства мгновенной частоты узкополосного сигнала, связь между спектрами сигнала и его комплексной огибающей.
- 19. Понятие аналитического сигнала, спектральная плотность аналитического сигнала.
 - 20. Преобразование Гильберта, свойства преобразования Гильберта.
 - 21. Преобразование Гильберта для гармонических и узкополосных сигналов.
 - 22. Вычисление огибающей, полной фазы и мгновенной частоты, примеры.
- 23. Преобразования сигналов в нелинейных радиотехнических цепях. Безынерционные нелинейные преобразования, внешние характеристики безынерционных нелинейных элементов, сопротивление нелинейного двухполюсника.
- 24. Способы описания характеристик нелинейных элементов: кусочно-линейная аппроксимация, степенная аппроксимация, показательная аппроксимация.
- 25. Спектральный состав тока в безынерционном нелинейном элементе при гармоническом внешнем воздействии, основной принцип.
 - 26. Спектральный состав тока при кусочно-линейной, степенной аппроксимациях.
- 27. Спектральный состав тока при показательной аппроксимации, понятие нелинейных искажений.
- 28. Принцип работы нелинейного резонансного усилителя, колебательная характеристика.
- 29. Энергетические соотношения в нелинейном резонансном усилителе, резонансное умножение частоты.
- 30. Бигармоническое воздействие на нелинейный элемент со степенной характеристикой, влияние кубического члена ВАХ.
 - 31. Понятие комбинационной частоты, примеры.
- 32. Эффекты, сопровождающие нелинейные преобразования нескольких колебаний.
 - 33. Принцип работы амплитудного модулятора, аналитическое рассмотрение.
 - 34. Получение сигналов с балансной и угловой модуляцией.
 - 35. Принцип детектирования АМ-сигналов, квадратичное детектирование.
- 36. Диодный детектор АМ-сигналов, взаимодействие сигнала и помехи в амплитудном детекторе.
 - 37. Фазовое и частотное детектирование.