Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования «Комсомольский-на-Амуре государственный университет»

УТВЕРЖДАЮ
Декан факультета
Энергетики и управления
(наименование факультета)
Гудим А.С.
(подпись, ФИО)
«» 2023 г.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ «Технологии роботизированного производства»

Направление подготовки	15.03.06 Мехатроника и робототехника
Направленность (профиль)	Робототехнические комплексы и системы
образовательной программы	

Обеспечивающее подразделение	
Кафедра « Электропривод и автоматизация промышленных установок»	

Разработчик рабочей программы:		
Старший преподаватель		Савельев Д.О.
(должность, степень, ученое звание)	(подпись)	(ФИО)
СОГЛАСОВАНО:		
2 2 1 2004.007		и чен
Заведующий кафедрой ЭПАПУ		<u>Черный С.П.</u>
	(подпись)	(ФИО)

1 Общие положения

Рабочая программа дисциплины «Технологии роботизированного производства» составлена в соответствии с требованиями федерального государственного образовательного стандарта, утвержденного приказом Министерства образования и науки Российской Федерации № 1046 от 17.08.2020, и основной профессиональной образовательной программы подготовки «Робототехнические комплексы и системы» по направлению подготовки «15.03.06 Мехатроника и робототехника».

	,
Задачи	Сформировать знания по конструкциям и принципам работы автомати-
дисциплины	ческих и автоматизированных линий, промышленных роботов, гибких
	производственных систем
	Сформировать навыки по проектированию систем автоматических и ав-
	томатизированных линий, промышленных роботов, а также систем
	управления станками
	Сформировать знания в области применения методик научно обоснован-
	ного выбора оборудования и промышленных роботов при проектирова-
	нии гибких производственных систем в производстве.
Основные	Автоматы и автоматические линии: Машины-автоматы. Автоматиче-
разделы / темы	ские линии, Выбор технологических методов и маршрута обработки,
дисциплины	Особенности применения, Выбор технологического оснащения и расчёт
	уровня автоматизации: транспортной складской системы, системы ин-
	струментального обеспечения системы удаления отходов, Автоматизи-
	рованные линии, Обзор прикладного ПО, Изучение теоретических раз-
	делов дисциплины, Изучение теоретических разделов дисциплины, под-
	готовка к занятиям семинарского типа, подготовка и оформление расчет-
	но-графической работы
	Применение промышленных роботов и роботизированных техноло-
	гических комплексов: Технические характеристики промышленных
	роботов, Манипуляционная система промышленных роботов, Особенно-
	сти применения промышленных роботов, Роботизированные технологи-
	ческие комплексы для механической обработки деталей, Промышленные
	роботов для кузнечно-прессового оборудования, красочных работ и
	гальванопокрытий, Основные недостатки комплексов, Конструкция, тех-
	нические характеристики и принцип работы промышленного робота,
	Разработка схемы управления роботом манипулятором, Проектирование
	гибкой автоматизированной линии участка, Изучение теоретических
	разделов дисциплины
	Автоматизация технологических процессов сборки: Автоматическая
	сборка методом искания, Вибрационный способ совмещения деталей при
	сборке, Автоматическая селективная сборка, Электромагнитная сборка
	соединений по цилиндрическим поверхностям, Анализ основных подхо-
	дов к реализации системы для различных промышленных объектов, Ав-
	томатизированная технология сборки, Технологические процессы робо-
	тизированной сборки, Проектирование гибкой автоматизированной ли-
	нии участка, Изучение теоретических разделов дисциплины
	Гибкие производственные системы: Основные термины и показатели
	ГПС. Преимущества и проблемы их внедрения, Особенности использо-
	вания, Типовые гибкие производственные модули, Эффективность при-
	менения ГПС, Основные недостатки ГПС, Компоновка гибкой автомати-
	зированной системы и составление структурной схемы ГПС, Гибкие ав-
	томатизированные системы. Структурная схема ГПС, Проектирование

гибкой автоматизированной линии участка, Изучение теоретических
разделов дисциплины

2 Перечень планируемых результатов обучения по дисциплине (модулю), соотнесенных с индикаторами достижения компетенций

Процесс изучения дисциплины «Технологии роботизированного производства» направлен на формирование следующих компетенций в соответствии с ФГОС ВО и основной образовательной программой:

Код и наименование	Индикаторы достижения	Планируемые результаты обу-
компетенции		чения по дисциплине
	Общепрофессиональные	
ОПК-9 Способен	ОПК-9.1 Знает порядок ввода в	Знать принцип работы, техни-
внедрять и осваивать	эксплуатацию нового технологи-	ческие характеристики эле-
новое технологиче-	ческого оборудования	ментов и подсистем входящих
ское оборудование	ОПК-9.2 Умеет анализировать	в состав робототехнических
	техническую документацию на	систем
	новое технологическое оборудо-	Уметь использовать пакеты
	вание	прикладных программ при мо-
	ОПК-9.3 Владеет навыками изу-	делировании и проведении вы-
	чения новых технологий произ-	числительных экспериментов
	водства и освоения технологиче-	для ГПС
	ского оборудования, реализую-	Владеть навыками исследова-
	щего эти технологии	ния математических моделей
		мехатронных и робототехниче-
		ских систем

3 Место дисциплины (модуля) в структуре образовательной программы

Дисциплина входит в состав блока 1 «Дисциплины (модули)» и относится к обязательной части.

Место дисциплины (этап формирования компетенции) отражено в схеме формирования компетенций, представленной в документе *Оценочные материалы*, размещенном на сайте университета www.knastu.ru / Haw университет / Образование / 15.03.06 Мехатроника и робототехника /Оценочные материалы).

Дисциплина «Технологии роботизированного производства» частично реализуется в форме практической подготовки. Практическая подготовка организуется путем проведения / выполнения лабораторных работ.

4 Содержание дисциплины (модуля), структурированное по темам (разделам) с указанием отведенного на них количества академических часов и видов учебной работы

4.1 Структура и содержание дисциплины для очной формы обучения

Дисциплина «Технологии роботизированного производства» изучается на 4 курсе(ах) в 7 семестре(ах).

Общая трудоёмкость дисциплины составляет 6 з.е., 216 ч., в том числе контактная работа обучающихся с преподавателем 96 ч., промежуточная аттестация в форме зачета с оценкой, самостоятельная работа обучающихся, 120 ч.

			ты, включа		•	
	боту обучающихся и трудоемкость (в часах)				.)	
		нтактная ра				
Наименование разделов, тем и со-	препода	вателя с об	бучающи-			
держание материала		мися		ИКР	Пром.	CPC
		Практи-	Лабора-	riixi	аттест.	CIC
	Лекции	ческие	торные			
		занятия	работы			
Раздел «Автоматы и автома-						
тические линии»						
Машины-автоматы. Автомати-	2					
ческие линии						
Выбор технологических мето-	2					
дов и маршрута обработки						
Особенности применения						4
Выбор технологического осна-			6*			
щения и расчёт уровня автома-						
тизации: транспортной склад-						
ской системы, системы инстру-						
ментального обеспечения си-						
стемы удаления отходов						
Автоматизированные линии			6*			
Обзор прикладного ПО						2
Изучение теоретических разде-						12
лов дисциплины						
Подготовка и оформление рас-						10
четно-графической работы						
Раздел «Применение промыш-						
ленных роботов и роботизиро-						
ванных технологических ком-						
плексов»	2					
Технические характеристики	2					
промышленных роботов						
Манипуляционная система	6					
промышленных роботов						0
Особенности применения про-						8
мышленных роботов	6					
Роботизированные технологи-	O					
ческие комплексы для механи-						
ческой обработки деталей	6					
Промышленные роботов для кузнечно-прессового оборудо-	U					
вания, красочных работ и галь- ванопокрытий						
Основные недостатки комплек-						6
конструкция, технические ха-			6*			
рактеристики и принцип рабо-			0.			
ты промышленного робота.						
Разработка схемы управления			6*			
тазработка схемы управления			<u>U</u>		<u> </u>	<u> </u>

			ты, включа			
	боту обучающихся и трудоемкость (в часах))	
		нтактная ра				
Наименование разделов, тем и со-	препода	вателя с об	бучающи-			
держание материала		мися		ИКР	Пром.	CPC
		Практи-	Лабора-	riixi	аттест.	CIC
	Лекции	ческие	торные			
		занятия	работы			
роботом манипулятором						
Проектирование гибкой авто-						2
матизированной линии участка						
Изучение теоретических разде-						2
лов дисциплины						
Раздел «Автоматизация техно-						
логических процессов сборки»						
Автоматическая сборка мето-	4					
дом искания						
Вибрационный способ совме-	4					
щения деталей при сборке						
Автоматическая селективная	4					
сборка						
Электромагнитная сборка со-	4					
единений по цилиндрическим						
поверхностям						
Анализ основных подходов к						12
реализации системы для раз-						
личных промышленных объек-						
ТОВ						
Автоматизированная техноло-			6*			
гия сборки						
Технологические процессы ро-			6*			
ботизированной сборки						
Проектирование гибкой авто-						18
матизированной линии участка						
Изучение теоретических разде-						6
лов дисциплины						
Раздел «Гибкие производствен-						
ные системы»						
Основные термины и показате-	4					
ли ГПС. Преимущества и про-						
блемы их внедрения						
Особенности использования						8
Типовые гибкие производ-	2					
ственные модули						
Эффективность применения	2					
ГПС						
Основные недостатки ГПС						8
Компоновка гибкой автомати-			6*			
зированной системы и состав-						
ление структурной схемы ГПС						
Гибкие автоматизированные			6*			

	Виды учебной работы, включая самостоятельную работу обучающихся и трудоемкость (в часах)					
		нтактная ра				ĺ
Наименование разделов, тем и со-	преподавателя с обучающи-					
держание материала		мися		ИКР	Пром.	CPC
		Практи-	Лабора-	HICI	аттест.	
	Лекции	ческие	торные			
		занятия	работы			
системы. Структурная схема						
ГПС						
Проектирование гибкой авто-						16
матизированной линии участка						
Изучение теоретических разде-						6
лов дисциплины						
Зачет с оценкой	-	-	-	-	-	-
ИТОГО	48		48*			120
по дисциплине	40	•	40			120

^{*} реализуется в форме практической подготовки

5 Оценочные средства для проведения текущего контроля и промежуточной аттестации обучающихся по дисциплине (модулю)

Фонды оценочных средств для проведения текущего контроля успеваемости и промежуточной аттестации обсуждаются и утверждаются на заседании кафедры. Полный комплект контрольных заданий или иных материалов, необходимых для оценивания результатов обучения по дисциплине (модулю) хранится на кафедре-разработчике в бумажном или электронном виде, также фонды оценочных средств доступны студентам в личном кабинете – раздел учебно-методическое обеспечение.

6 Учебно-методическое и информационное обеспечение дисциплины (модуля)

6.1 Основная и дополнительная литература

Перечень рекомендуемой основной и дополнительной литературы представлен на сайте университета www.knastu.ru / Наш университет / Образование / 15.03.06 Мехатроника и робототехника / Рабочий учебный план / Реестр литературы.

6.2 Современные профессиональные базы данных и информационные справочные системы, используемые при осуществлении образовательного процесса по дисциплине

Каждому обучающимуся обеспечен доступ (удаленный доступ), в том числе в случае применения электронного обучения, дистанционных образовательных технологий, к современным профессиональным базам данных и информационным справочным системам, с которыми у университета заключен договор.

Перечень рекомендуемых профессиональных баз данных и информационных справочных систем представлен на сайте университета www.knastu.ru / Наш университет

/ Образование / 15.03.06 Мехатроника и робототехника / Рабочий учебный план / Реестр ЭБС.

Актуальная информация по заключенным на текущий учебный год договорам приведена на странице Научно-технической библиотеки (НТБ) на сайте университета

https://knastu.ru/page/3244

6.3 Перечень ресурсов информационно-телекоммуникационной сети «Интернет», необходимых для освоения дисциплины (модуля)

На странице НТБ можно воспользоваться интернет-ресурсами открытого доступа по укрупненной группе направлений и специальностей (УГНС) 15.00.00 Машиностроение:

https://knastu.ru/page/539

7 Организационно-педагогические условия

Организация образовательного процесса регламентируется учебным планом и расписанием учебных занятий. Язык обучения (преподавания) - русский. Для всех видов аудиторных занятий академический час устанавливается продолжительностью 45 минут.

При формировании своей индивидуальной образовательной траектории обучающийся имеет право на перезачет соответствующих дисциплин и профессиональных модулей, освоенных в процессе предшествующего обучения, который освобождает обучающегося от необходимости их повторного освоения.

7.1 Образовательные технологии

Учебный процесс при преподавании курса основывается на использовании традиционных, инновационных и информационных образовательных технологий. Традиционные образовательные технологии представлены лекциями и семинарскими (практическими) занятиями. Инновационные образовательные технологии используются в виде широкого применения активных и интерактивных форм проведения занятий. Информационные образовательные технологии реализуются путем активизации самостоятельной работы студентов в информационной образовательной среде.

7.2 Занятия лекционного типа

Лекционный курс предполагает систематизированное изложение основных вопросов учебного плана.

На первой лекции лектор обязан предупредить студентов, применительно к какому базовому учебнику (учебникам, учебным пособиям) будет прочитан курс.

Лекционный курс должен давать наибольший объем информации и обеспечивать более глубокое понимание учебных вопросов при значительно меньшей затрате времени, чем это требуется большинству студентов на самостоятельное изучение материала.

7.3 Занятия семинарского типа

Семинарские занятия представляют собой детализацию лекционного теоретического материала, проводятся в целях закрепления курса и охватывают все основные разделы.

Основной формой проведения семинаров является обсуждение наиболее проблемных и сложных вопросов по отдельным темам, а также разбор примеров и ситуаций в аудиторных условиях. В обязанности преподавателя входят: оказание методической помощи и консультирование студентов по соответствующим темам курса.

Активность на семинарских занятиях оценивается по следующим критериям:

- ответы на вопросы, предлагаемые преподавателем;
- участие в дискуссиях;
- выполнение проектных и иных заданий;
- ассистирование преподавателю в проведении занятий.

Ответ должен быть аргументированным, развернутым, не односложным, содержать ссылки на источники.

Доклады и оппонирование докладов проверяют степень владения теоретическим материалом, а также корректность и строгость рассуждений.

Оценивание заданий, выполненных на семинарском занятии, входит в накопленную оценку.

7.4 Самостоятельная работа обучающихся по дисциплине (модулю)

Самостоятельная работа студентов — это процесс активного, целенаправленного приобретения студентом новых знаний, умений без непосредственного участия преподавателя, характеризующийся предметной направленностью, эффективным контролем и оценкой результатов деятельности обучающегося.

Цели самостоятельной работы:

- · систематизация и закрепление полученных теоретических знаний и практических умений студентов;
 - углубление и расширение теоретических знаний;
- · формирование умений использовать нормативную и справочную документацию, специальную литературу;
- развитие познавательных способностей, активности студентов, ответственности и организованности;
- · формирование самостоятельности мышления, творческой инициативы, способностей к саморазвитию, самосовершенствованию и самореализации;
 - развитие исследовательских умений и академических навыков.

Самостоятельная работа может осуществляться индивидуально или группами студентов в зависимости от цели, объема, уровня сложности, конкретной тематики.

Технология организации самостоятельной работы студентов включает использование информационных и материально-технических ресурсов университета.

Контроль результатов внеаудиторной самостоятельной работы студентов может проходить в письменной, устной или смешанной форме.

Студенты должны подходить к самостоятельной работе как к наиважнейшему средству закрепления и развития теоретических знаний, выработке единства взглядов на отдельные вопросы курса, приобретения определенных навыков и использования профессиональной литературы.

7.5 Методические рекомендации для обучающихся по освоению дисциплины

При изучении дисциплины обучающимся целесообразно выполнять следующие рекомендации:

- 1. Изучение учебной дисциплины должно вестись систематически.
- 2. После изучения какого-либо раздела по учебнику или конспектным материалам рекомендуется по памяти воспроизвести основные термины, определения, понятия раздела.
- 3. Особое внимание следует уделить выполнению отчетов по практическим занятиям и индивидуальным комплексным заданиям на самостоятельную работу.

4. Вся тематика вопросов, изучаемых самостоятельно, задается на лекциях преподавателем. Им же даются источники (в первую очередь вновь изданные в периодической научной литературе) для более детального понимания вопросов, озвученных на лекции.

При самостоятельной проработке курса обучающиеся должны:

- просматривать основные определения и факты;
- повторить законспектированный на лекционном занятии материал и дополнить его с учетом рекомендованной по данной теме литературы;
- изучить рекомендованную литературу, составлять тезисы, аннотации и конспекты наиболее важных моментов:
 - самостоятельно выполнять задания, аналогичные предлагаемым на занятиях;
 - использовать для самопроверки материалы фонда оценочных средств.

8 Материально-техническое обеспечение, необходимое для осуществления образовательного процесса по дисциплине (модулю)

Перечень используемого программного обеспечения

Наименование ПО	Реквизиты / условия использования
FESTO FluidSim P	Договор АЭ44 №007/11 от 12.12.2016
FESTO FluidSim H	Договор АЭ44 №007/11 от 12.12.2016
FESTO FluidSim E	Договор АЭ44 №007/11 от 12.12.2016

Для проведения лекционных занятий применяется аудитория с мультимедиа-проектором.

8.1 Лицензионное и свободно распространяемое программное обеспечение, используемое при осуществлении образовательного процесса по диспиплине

Университет обеспечен необходимым комплектом лицензионного и свободно распространяемого программного обеспечения, в том числе отечественного производства. Состав программного обеспечения, необходимого для освоения дисциплины, приведен на сайте университета www.knastu.ru / Haш университет / Образование / 15.03.06 Мехатроника и робототехника / Рабочий учебный план / Реестр ПО.

Актуальные на текущий учебный год реквизиты / условия использования программного обеспечения приведены на странице ИТ-управления на сайте университета:

https://knastu.ru/page/1928

8.2 Учебно-лабораторное оборудование

Наименование аудитории (лаборатории)	Используемое оборудование
Лаборатория промышленной ро-	ПК, Универсальная роботизированная учебная ячейка
бототехники	(3 шт.) Универсальная роботизированная сборочно-
	сварочная ячейка (1 шт.) Роботизированная ячейка
	механической обработки (1 шт.) Иттербиевый воло-
	конный лазер ЛС-2 в комплекте с чиллером и внешней
	оптикой (1 шт.)

8.3 Технические и электронные средства обучения

Лекционные занятия).

Аудитории для лекционных занятий укомплектованы мебелью и техническими средствами обучения, служащими для представления учебной информации большой аудитории (наборы демонстрационного оборудования (проектор, экран, компьютер/ноутбук), учебно-наглядные пособия, тематические иллюстрации).

Лабораторные занятия.

Для лабораторных занятий используется аудитория, оснащенная оборудованием, указанным в табл. п. 8.2.

Самостоятельная работа.

Помещения для самостоятельной работы оснащены компьютерной техникой с возможностью подключения к сети «Интернет» и доступом к электронной информационно-образовательной среде КнАГУ:

- зал электронной информации НТБ КнАГУ;
- компьютерные классы факультета.

9 Иные сведения

Методические рекомендации по обучению лиц с ограниченными возможностями здоровья и инвалидов

Освоение дисциплины обучающимися с ограниченными возможностями здоровья может быть организовано как совместно с другими обучающимися, так и в отдельных группах. Предполагаются специальные условия для получения образования обучающимися с ограниченными возможностями здоровья.

Профессорско-педагогический состав знакомится с психолого-физиологическими особенностями обучающихся инвалидов и лиц с ограниченными возможностями здоровья, индивидуальными программами реабилитации инвалидов (при наличии). При необходимости осуществляется дополнительная поддержка преподавания тьюторами, психологами, социальными работниками, прошедшими подготовку ассистентами.

В соответствии с методическими рекомендациями Минобрнауки РФ (утв. 8 апреля 2014 г. N АК-44/05вн) в курсе предполагается использовать социально-активные и рефлексивные методы обучения, технологии социокультурной реабилитации с целью оказания помощи в установлении полноценных межличностных отношений с другими студентами, создании комфортного психологического климата в студенческой группе. Подбор и разработка учебных материалов производятся с учетом предоставления материала в различных формах: аудиальной, визуальной, с использованием специальных технических средств и информационных систем.

Освоение дисциплины лицами с OB3 осуществляется с использованием средств обучения общего и специального назначения (персонального и коллективного использования). Материально-техническое обеспечение предусматривает приспособление аудиторий к нуждам лиц с OB3.

Форма проведения аттестации для студентов-инвалидов устанавливается с учетом индивидуальных психофизических особенностей. Для студентов с ОВЗ предусматривается доступная форма предоставления заданий оценочных средств, а именно:

- · в печатной или электронной форме (для лиц с нарушениями опорнодвигательного аппарата);
- · в печатной форме или электронной форме с увеличенным шрифтом и контрастностью (для лиц с нарушениями слуха, речи, зрения);
 - методом чтения ассистентом задания вслух (для лиц с нарушениями зрения).

Студентам с инвалидностью увеличивается время на подготовку ответов на контрольные вопросы. Для таких студентов предусматривается доступная форма предоставления ответов на задания, а именно:

- · письменно на бумаге или набором ответов на компьютере (для лиц с нарушениями слуха, речи);
- · выбором ответа из возможных вариантов с использованием услуг ассистента (для лиц с нарушениями опорно-двигательного аппарата);
 - устно (для лиц с нарушениями зрения, опорно-двигательного аппарата).

При необходимости для обучающихся с инвалидностью процедура оценивания результатов обучения может проводиться в несколько этапов.