Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования «Комсомольский-на-Амуре государственный университет»

УТВЕРЖДАЮ

Декан факультета

Энергетики и управления

(наименование факультета) <u>А.С. Гудим</u>

(подпись, ФИО) «2021 г.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

«Средства автоматизированных вычислений»

Направление подготовки	11.03.04 Электроника и наноэлектроника
Направленность (профиль) образовательной программы	Проектирование электронных устройств
Квалификация выпускника	Бакалавр
Год начала подготовки (по учебному плану)	2021
Форма обучения	Очная форма
Технология обучения	Традиционная

Курс	Семестр	Трудоемкость, з.е.
1	1	3

Вид промежуточной атте- стации	Обеспечивающее подразделение
Зачет с оценкой	Кафедра «Электропривод и автоматизация промышленных установок»

Разработчик рабочей программы:

Доцент, Кандидат технических наук

СОГЛАСОВАНО:

Заведующий кафедрой

Кафедра «Электропривод и автоматизация промышленных установок»

Заведующий выпускающей кафедрой Кафедра «Промышленная электроника» _ Черный С.П.

Любушкина Н.Н.

1 Введение

Рабочая программа и фонд оценочных средств дисциплины «Средства автоматизированных вычислений» составлены в соответствии с требованиями федерального государственного образовательного стандарта, утвержденного приказом Минобрнауки Российской Федерации 927 от 19 сентября 2017 г., и основной профессиональной образовательной программы подготовки «Проектирование электронных устройств» по направлению подготовки «11.03.04 Электроника и наноэлектроника».

Практическая подготовка реализуется на основе:

Профессиональный стандарт 29.007 «СПЕЦИАЛИСТ ПО ПРОЕКТИРОВАНИЮ МИКРО- И НАНОРАЗМЕРНЫХ ЭЛЕКТРОМЕХАНИЧЕСКИХ СИСТЕМ».

Обобщенная трудовая функция: А Разработка принципиальной электрической схемы микроэлектромеханической системы.

НУ-1 Применять современные методы расчета и анализа нано- и микросистем.

Задачи дисциплины	Приобретение практических навыков работы в конкретных пакетах, систем компьютерной математики (СКМ) по решению тривиальных задач математики; овладение знаниями базовых возможностей современных СКМ для дальнейших исследований физических моделей процессов и явлений; освоение приемов, методов и способов выявления, наблюдения, измерения и контроля параметров вычислительных процессов.
Основные разделы / темы дисциплины	Определение функций. Построение графиков. Решение алгебраических уравнений, систем уравнений. Аппроксимация, интерполяция, регрессия. Решение дифференциальных уравнений и их систем. Mathcad: элементы программирования.

2 Перечень планируемых результатов обучения по дисциплине (модулю), соотнесенных с индикаторами достижения компетенций

Процесс изучения дисциплины «Средства автоматизированных вычислений» направлен на формирование следующих компетенций в соответствии с ФГОС ВО и основной образовательной программой (таблица 1):

Таблица 1 – Компетенции и индикаторы их достижения

Код и наименование компетенции	Индикаторы достижения	Планируемые результаты обучения по дисциплине
	Общепрофессиональные	
ОПК-2 Способен самостоятельно проводить экспериментальные исследования и использовать основные приемы обработки и представления полученных данных	ОПК-2.1 Знает основные методы и средства проведения экспериментальных исследований, системы стандартизации и сертификации ОПК-2.2 Умеет выбирать способы и средства измерений и проводить экспериментальные исследования	Знать как использовать современное программное обеспечение средств автоматизированных вычислений. Уметь проводить экспериментальные исследования

	ОПК-2.3 Владеет способами обработки и представления полученных данных и оценки погрешности результатов измерений	Владеть навыками пред- ставления полученных данных и оценки погреш- ности результатов измере- ний
--	--	---

3 Место дисциплины (модуля) в структуре образовательной программы

Дисциплина «Средства автоматизированных вычислений» изучается на 1 курсе, 1 семестре.

Дисциплина входит в состав блока 1 «Дисциплины (модули)» и относится к базовой части.

Знания, умения и навыки, сформированные при изучении дисциплины «Средства автоматизированных вычислений», будут востребованы при изучении последующих дисциплин: «Физический эксперимент», «Основы промышленной автоматики и робототехники»

Дисциплина «Средства автоматизированных вычислений» частично реализуется в форме практической подготовки.

Дисциплина «Средства автоматизированных вычислений» в рамках воспитательной работы направлена на формирование у обучающихся активной гражданской позиции, уважения к правам и свободам человека, знания правовых основ и законов, воспитание чувства ответственности или умения аргументировать, самостоятельно мыслить, развивает творчество, профессиональные умения или творчески развитой личности, системы осознанных знаний, ответственности за выполнение учебно-производственных заданий и т.д.

4 Объем дисциплины (модуля) в зачетных единицах с указанием количества академических часов, выделенных на контактную работу обучающихся с преподавателем (по видам учебных занятий) и на самостоятельную работу обучающихся

Общая трудоемкость (объем) дисциплины составляет 3 з.е., 108 акад. час. Распределение объема дисциплины (модуля) по видам учебных занятий представлено в таблице 2.

Таблица 2 – Объем дисциплины (модуля) по видам учебных занятий

Объем дисциплины	Всего академических часов
Общая трудоемкость дисциплины	108
Контактная аудиторная работа обучающихся с преподавателем (по видам учебных занятий), всего	32
В том числе:	
занятия лекционного типа (лекции и иные учебные занятия, предусматривающие преимущественную передачу учебной информации педагогическими работниками), в том числе в форме практической подготовки:	20
занятия семинарского типа (семинары, практические занятия, практикумы, лабораторные работы, коллоквиумы и иные аналогичные за-	12

нятия), в том числе в форме практической подготовки:	
Самостоятельная работа обучающихся и контактная работа, включающая групповые консультации, индивидуальную работу обучающихся с преподавателями (в том числе индивидуальные консультации); взаимодействие в электронной информационно-образовательной среде вуза	
Промежуточная аттестация обучающихся – Зачет с оценкой	0

5 Содержание дисциплины (модуля), структурированное по темам (разделам) с указанием отведенного на них количества академических часов и видов учебной работы

Таблица 3 – Структура и содержание дисциплины (модуля)

Наименование разделов, тем и содержание материала	Виды учебной работы, включая самостоятельн работу обучающихся и трудоемкость (в часа:		-	
	Контактная работа преподавателя с обучающимися		CPC	
	Лекции	Семинарские (практические занятия)	Лабораторные занятия	
Раздел 1 Определение функций. Построение графиков				
Тема 1.1 Способы задания переменных и функций. Построение графиков функций.	2			
Тема 1.2 Редактирование и изменение параметров графиков функции.	2			
Основы работы в среде MathCAD			2*	
Построение графиков в среде MathCad			2*	
Подготовка к занятиям семинарского типа, изучение теоретических разделов курса, выполнение проверочной работы				15
Раздел 2 Решение алгебраических уравнений, систем уравнений				
Тема 2.1 Решение алгебраических уравнений и системы уравнений.	2			
Тема 2.2 Встроенные функции: root, polyroot, Given→Find, Isolve.	2			

Вектора и матрицы в среде MathCad		2*	
Решение уравнений в среде MathCad		2*	
Подготовка к занятиям семинарского типа, изучение теоретических разделов курса, выполнение проверочной работы			15
Раздел 3 Аппроксимация, интер- поляция, регрессия			
Тема 3.1 Линейная и сплайн интерполяции, экстраполяции (линейная кубическая, параболическая), линейная и параболическая регрессии			
Исследование функций в среде MathCad			
Подготовка к занятиям семинар- ского типа, изучение теоретических разделов курса, выполнение прове- рочной работы			15
Раздел 4 Решение дифференци-			
альных уравнений и их систем			
Тема 4.1 Решение простых дифференциальных уравнений	2		
Тема 4.2 Решение систем дифференциальных уравнений	2		
Изучение теоретических разделов курса, выполнение проверочной работы			15
Раздел 5 Mathcad: Элементы про- граммирования			
Тема 5.1 Операции с векторами и матрицами. Символьные вычисления в MathCAD.	2		
Тема 5.2 Программирование в MathCAD.	2		
Символьные вычисления в среде MathCAD		2*	
Подготовка к занятиям семинар- ского типа, изучение теоретических разделов курса, выполнение прове- рочной работы			16
ИТОГО по дисциплине	20	12	76

^{*} реализуется в форме практической подготовки

6 Внеаудиторная самостоятельная работа обучающихся по дисциплине (модулю)

При планировании самостоятельной работы студенту рекомендуется руководствоваться следующим распределением часов на самостоятельную работу (таблица 4):

Таблица 4 – Рекомендуемое		
	паспрепенние насов на	ι σαμιοστοστέπι μίνιο η αροτί
	пасинсисисние часов на	

Компоненты самостоятельной работы	Количество часов
Изучение теоретических разделов дисциплины	20
Подготовка к занятиям семинарского типа	30
Подготовка и оформление проверочной работы	26
	76

7 Оценочные средства для проведения текущего контроля и промежуточной аттестации обучающихся по дисциплине (модулю)

Фонд оценочных средств для проведения текущего контроля успеваемости и промежуточной аттестации представлен в Приложении 1.

Полный комплект контрольных заданий или иных материалов, необходимых для оценивания результатов обучения по дисциплине (модулю), практике хранится на кафедре-разработчике в бумажном и электронном виде.

8 Учебно-методическое и информационное обеспечение дисциплины (модуля)

8.1 Основная литература

- 1) Методы вычислений в пакете MathCAD : учебное пособие / И. А. Бедарев, Ю. В. Кратова, Н. Н. Федорова, И. А. Федорченко. Новосибирск : Новосибирский государственный архитектурно-строительный университет (Сибстрин), ЭБС АСВ, 2013. 169 с. ISBN 978-5-7795-0659-5. Текст : электронный // Электронно-библиотечная система IPR BOOKS : [сайт]. URL: https://www.iprbookshop.ru/68893.html (дата обращения: 21.06.2021). Режим доступа: для авторизир. пользователей. DOI: https://doi.org/10.23682/68893
- 2) Решение инженерных задач в пакете MathCAD : учебное пособие / Ю. Е. Воскобойников, А. Ф. Задорожный, Л. А. Литвинов, Ю. Г. Черный ; под редакцией Ю. Е. Воскобойников. Новосибирск : Новосибирский государственный архитектурностроительный университет (Сибстрин), ЭБС АСВ, 2013. 121 с. ISBN 978-5-7795-0641-0. Текст : электронный // Электронно-библиотечная система IPR BOOKS : [сайт]. URL: https://www.iprbookshop.ru/68838.html (дата обращения: 21.06.2021). Режим доступа: для авторизир. пользователей. DOI: https://doi.org/10.23682/68838
- 3) Исаев, Ю. Н. Практика использования системы MathCad в расчетах электрических и магнитных цепей: учебное пособие / Ю. Н. Исаев, А. М. Купцов. Москва: СОЛОН-ПРЕСС, 2017. 180 с. ISBN 978-5-91359-123-4. Текст: электронный // Электронно-библиотечная система IPR BOOKS: [сайт]. URL: https://www.iprbookshop.ru/90411.html (дата обращения: 21.06.2021). Режим доступа: для авторизир. пользователей.

8.2 Дополнительная литература

- 1) Дьяконов, В. П. Маthcad 8—12 для студентов / В. П. Дьяконов. Москва : СО-ЛОН-ПРЕСС, 2005. 632 с. ISBN 5-98003-212-6. Текст : электронный // Электронно-библиотечная система IPR BOOKS : [сайт]. URL: https://www.iprbookshop.ru/20845.html (дата обращения: 21.06.2021). Режим доступа: для авторизир. пользователей
- 2) Митрофанов, С. В. Использование системы MathCAD при решении задач электротехники и электромеханики : методические указания к выполнению РГЗ по дисци-

плине «Прикладные задачи программирования» / С. В. Митрофанов, А. С. Падеев. — Оренбург: Оренбургский государственный университет, ЭБС АСВ, 2005. — 39 с. — Текст: электронный // Электронно-библиотечная система IPR BOOKS: [сайт]. — URL: https://www.iprbookshop.ru/51516.html (дата обращения: 21.06.2021). — Режим доступа: для авторизир. пользователей

3) Алехин, В. А. Электротехника и электроника: Лабораторный практикум с использованием Миниатюрной электротехнической лаборатории МЭЛ, компьютерного моделирования, Mathcad и LabVIEW: учебное пособие / В. А. Алехин. — Саратов: Вузовское образование, 2017. — 225 с. — ISBN 978-5-4487-0014-9. — Текст: электронный / /Электронно-библиотечная система IPR BOOKS: [сайт]. — URL: https://www.iprbookshop.ru/64898.html (дата обращения: 21.06.2021). — Режим доступа: для авторизир. пользователей. - DOI: https://doi.org/10.23682/64898

8.4 Современные профессиональные базы данных и информационные справочные системы, используемые при осуществлении образовательного процесса по дисциплине

- 1) znanium.com: электронно-библиотечная система: сайт. Москва, 2021 ООО «Знаниум» URL: http://www.znanium.com (дата обращения: 01.06.2021). Режим доступа: для зарегистрир. пользователей.
- 2) urait.ru/: образовательная платформа Юрайт: сайт. Москва, 2021 . URL: https://urait.ru/ (дата обращения: 01.06.2021). Режим доступа: для зарегистрир. пользователей.
- 3) iprbookshop.ru: электронно-библиотечная система: сайт. Саратов, 2021 ООО «Компания "Ай Пи Ар Медиа"» URL: http://www.iprbookshop.ru (дата обращения: 01.06.2021).

8.5 Перечень ресурсов информационно-телекоммуникационной сети «Интернет», необходимых для освоения дисциплины (модуля)

- 1) http://communities.ptc.com/community/mathcad сайт компании РТС, производителя Mathcad
- 2) http://www.pts-russia.com/ сайт авторизованного партнера компании РТС (Parametric Technology Corporation) в России
- 3) http://mcs.ptc.com/mcs/ информация о Mathcad Calculation Server. Примеры, документация.
- 4) http://www.mathcad.com/library/ библиотека ресурсов по системе Mathcad. Книги, электронные книги Mathcad, файлы Mathcad, галереи графики и анимаций, головоломки.

8.6 Лицензионное и свободно распространяемое программное обеспечение, используемое при осуществлении образовательного процесса по дисциплине

Таблица 5 – Перечень используемого программного обеспечения

Наименование ПО	Реквизиты / условия использования
Microsoft Imagine Premium	Лицензионный договор АЭ223 №008/65 от 11.01.2019
OpenOffice	Свободная лицензия, условия использования по ссылке:
	https://www.openoffice.org/license.html
Математический редактор	Сервисный контракт # 2А1820328, лицензионный ключ,
MathCad	договор № 106-АЭ120 от 27.11.2012

9 Организационно-педагогические условия

Организация образовательного процесса регламентируется учебным планом и расписанием учебных занятий. Язык обучения (преподавания) - русский. Для всех видов аудиторных занятий академический час устанавливается продолжительностью 45 минут.

При формировании своей индивидуальной образовательной траектории обучающийся имеет право на перезачет соответствующих дисциплин и профессиональных модулей, освоенных в процессе предшествующего обучения, который освобождает обучающегося от необходимости их повторного освоения.

9.1 Образовательные технологии

Учебный процесс при преподавании курса основывается на использовании традиционных, инновационных и информационных образовательных технологий. Традиционные образовательные технологии представлены лекциями и семинарскими (практическими) занятиями. Инновационные образовательные технологии используются в виде широкого применения активных и интерактивных форм проведения занятий. Информационные образовательные технологии реализуются путем активизации самостоятельной работы студентов в информационной образовательной среде.

9.2 Занятия лекционного типа

Лекционный курс предполагает систематизированное изложение основных вопросов учебного плана.

На первой лекции лектор обязан предупредить студентов, применительно к какому базовому учебнику (учебникам, учебным пособиям) будет прочитан курс.

Лекционный курс должен давать наибольший объем информации и обеспечивать более глубокое понимание учебных вопросов при значительно меньшей затрате времени, чем это требуется большинству студентов на самостоятельное изучение материала.

9.3 Занятия семинарского типа

Семинарские занятия представляют собой детализацию лекционного теоретического материала, проводятся в целях закрепления курса и охватывают все основные разделы.

Основной формой проведения семинаров является обсуждение наиболее проблемных и сложных вопросов по отдельным темам, а также разбор примеров и ситуаций в аудиторных условиях. В обязанности преподавателя входят: оказание методической помощи и консультирование студентов по соответствующим темам курса.

Активность на семинарских занятиях оценивается по следующим критериям:

- ответы на вопросы, предлагаемые преподавателем;
- участие в дискуссиях;
- выполнение проектных и иных заданий;
- ассистирование преподавателю в проведении занятий.

Ответ должен быть аргументированным, развернутым, не односложным, содержать ссылки на источники.

Доклады и оппонирование докладов проверяют степень владения теоретическим материалом, а также корректность и строгость рассуждений.

Оценивание заданий, выполненных на семинарском занятии, входит в накопленную оценку.

9.4 Самостоятельная работа обучающихся по дисциплине (модулю)

Самостоятельная работа студентов — это процесс активного, целенаправленного приобретения студентом новых знаний, умений без непосредственного участия преподавателя, характеризующийся предметной направленностью, эффективным контролем и оценкой результатов деятельности обучающегося.

Цели самостоятельной работы:

- систематизация и закрепление полученных теоретических знаний и практических умений студентов;
 - углубление и расширение теоретических знаний;
- формирование умений использовать нормативную и справочную документацию, специальную литературу;
- развитие познавательных способностей, активности студентов, ответственности и организованности;
- формирование самостоятельности мышления, творческой инициативы, способностей к саморазвитию, самосовершенствованию и самореализации;
 - развитие исследовательских умений и академических навыков.

Самостоятельная работа может осуществляться индивидуально или группами студентов в зависимости от цели, объема, уровня сложности, конкретной тематики.

Технология организации самостоятельной работы студентов включает использование информационных и материально-технических ресурсов университета.

Контроль результатов внеаудиторной самостоятельной работы студентов может проходить в письменной, устной или смешанной форме.

Студенты должны подходить к самостоятельной работе как к наиважнейшему средству закрепления и развития теоретических знаний, выработке единства взглядов на отдельные вопросы курса, приобретения определенных навыков и использования профессиональной литературы.

9.5 Методические указания для обучающихся по освоению дисциплины

При изучении дисциплины обучающимся целесообразно выполнять следующие рекомендации:

- 1. Изучение учебной дисциплины должно вестись систематически.
- 2. После изучения какого-либо раздела по учебнику или конспектным материалам рекомендуется по памяти воспроизвести основные термины, определения, понятия раздела.
- 3. Особое внимание следует уделить выполнению отчетов по практическим занятиям и индивидуальным комплексным заданиям на самостоятельную работу.
- 4. Вся тематика вопросов, изучаемых самостоятельно, задается на лекциях преподавателем. Им же даются источники (в первую очередь вновь изданные в периодической научной литературе) для более детального понимания вопросов, озвученных на лекции.

При самостоятельной проработке курса обучающиеся должны:

- просматривать основные определения и факты;
- повторить законспектированный на лекционном занятии материал и дополнить его с учетом рекомендованной по данной теме литературы;
- изучить рекомендованную литературу, составлять тезисы, аннотации и конспекты наиболее важных моментов;
 - самостоятельно выполнять задания, аналогичные предлагаемым на занятиях;
 - использовать для самопроверки материалы фонда оценочных средств.

10 Описание материально-технического обеспечения, необходимого для осуществления образовательного процесса по дисциплине (модулю)

10.1 Учебно-лабораторное оборудование

Аудитория	Наименование аудитории (лаборатории)	Используемое оборудование
304/3	Лаборатория электронной техники (медиа)	Стенд 87Л-01 для проведения лабораторнопрактических работ по радиотехнике
		Осциллограф С1-178
		Стенд "Электроника" НТЦ-05

10.2 Технические и электронные средства обучения

При проведении занятий используется аудитория, оборудованная проектором (стационарным или переносным) для отображения презентаций. Кроме того, при проведении лекций и практических занятий необходим компьютер с установленным на нем браузером и программным обеспечением для демонстрации презентаций.

Самостоятельная работа.

Помещения для самостоятельной работы оснащены компьютерной техникой с возможностью подключения к сети «Интернет» и доступом к электронной информационнообразовательной среде КнАГУ:

- читальный зал НТБ КнАГУ;
- компьютерные классы (ауд. 211, 213 корпус № 3).

11 Иные сведения

Методические рекомендации по обучению лиц с ограниченными возможностями здоровья и инвалидов

Освоение дисциплины обучающимися с ограниченными возможностями здоровья может быть организовано как совместно с другими обучающимися, так и в отдельных группах. Предполагаются специальные условия для получения образования обучающимися с ограниченными возможностями здоровья.

Профессорско-педагогический состав знакомится с психолого-физиологическими особенностями обучающихся инвалидов и лиц с ограниченными возможностями здоровья, индивидуальными программами реабилитации инвалидов (при наличии). При необходимости осуществляется дополнительная поддержка преподавания тьюторами, психологами, социальными работниками, прошедшими подготовку ассистентами.

В соответствии с методическими рекомендациями Минобрнауки РФ (утв. 8 апреля 2014 г. N АК-44/05вн) в курсе предполагается использовать социально-активные и рефлексивные методы обучения, технологии социокультурной реабилитации с целью оказания помощи в установлении полноценных межличностных отношений с другими студентами, создании комфортного психологического климата в студенческой группе. Подбор и разработка учебных материалов производятся с учетом предоставления материала в различных формах: аудиальной, визуальной, с использованием специальных технических средств и информационных систем.

Освоение дисциплины лицами с OB3 осуществляется с использованием средств обучения общего и специального назначения (персонального и коллективного использования). Материально-техническое обеспечение предусматривает приспособление аудиторий к нуждам лиц с OB3.

Форма проведения аттестации для студентов-инвалидов устанавливается с учетом индивидуальных психофизических особенностей. Для студентов с ОВЗ предусматривается доступная форма предоставления заданий оценочных средств, а именно:

- в печатной или электронной форме (для лиц с нарушениями опорнодвигательного аппарата);
- в печатной форме или электронной форме с увеличенным шрифтом и контрастностью (для лиц с нарушениями слуха, речи, зрения);
 - методом чтения ассистентом задания вслух (для лиц с нарушениями зрения).

Студентам с инвалидностью увеличивается время на подготовку ответов на контрольные вопросы. Для таких студентов предусматривается доступная форма предоставления ответов на задания, а именно:

- письменно на бумаге или набором ответов на компьютере (для лиц с нарушениями слуха, речи);

- выбором ответа из возможных вариантов с использованием услуг ассистента (для лиц с нарушениями опорно-двигательного аппарата);
 - устно (для лиц с нарушениями зрения, опорно-двигательного аппарата).

При необходимости для обучающихся с инвалидностью процедура оценивания результатов обучения может проводиться в несколько этапов.

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

по дисциплине

«Средства автоматизированных вычислений»

Направление подготовки	11.03.04 Электроника и наноэлектроника
Направленность (профиль) образовательной программы	Проектирование электронных устройств
Квалификация выпускника	Бакалавр
Год начала подготовки (по учебному плану)	2021
Форма обучения	Очная форма
Технология обучения	Традиционная

Курс	Семестр	Трудоемкость, з.е.
1	1	3

Вид промежуточной аттестации	Обеспечивающее подразделение
Зачет с оценкой	Кафедра «Электропривод и автоматизация промышленных установок»

1 Перечень планируемых результатов обучения по дисциплине (модулю), соотнесенных с индикаторами достижения компетенций

Таблица 1 – Компетенции и индикаторы их достижения

Код и наименование компе- тенции	Индикаторы достижения	Планируемые результаты обучения по дисциплине
	Общепрофессиональные	
ОПК-2 Способен самостоятельно проводить экспериментальные исследования и использовать основные приемы обработки и представления полученных данных	ОПК-2.1 Знает основные методы и средства проведения экспериментальных исследований, системы стандартизации и сертификации ОПК-2.2 Умеет выбирать способы и средства измерений и проводить экспериментальные исследования ОПК-2.3 Владеет способами обработки и представления полученных данных и оценки погрешности результатов измерений	Знать как использовать современное программное обеспечение средств автоматизированных вычислений. Уметь проводить экспериментальные исследования Владеть навыками представления полученных данных и оценки погрешности результатов измерений

Таблица 2 – Паспорт фонда оценочных средств

Контролируемые раз- делы (темы) дисципли- ны	Формируемая компетенция	Наименование оценочного средства	Показатели оценки
Разделы 1,2,3,5	ОПК-2	Лабораторные работы	Аргументированность ответов
Разделы 1-5	ОПК-2	Проверочная ра- бота	Полнота и правильность выполнения задания
Разделы 1-5	ОПК-2	Тест	Полнота и аргументированность ответов

2 Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующие процесс формирования компетенций

Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности, представлены в виде технологической карты дисциплины (таблица 3).

Таблица 3 – Технологическая карта

Наименова-	Сроки	Шкала	Критерии оценивания
ние оценочно-	выпол-	оценива-	
го средства	нения	ния	
1 семестр			

Промежуточная аттестация в форме «Зачет с оценкой»			
Тест	в течение семестра	30 баллов	30 баллов — 91-100 % правильных ответов — высокий уровень знаний; 20 баллов — 71-90 % правильных ответов — достаточно высокий уровень знаний; 10 баллов — 61-70 % правильных ответов — средний уровень знаний; 0 баллов — 0-60 % правильных ответов — очень низкий уровень знаний.
Лабораторная работа 1	в течение семестра	5 баллов	5 баллов – студент показал отличные навыки применения полученных знаний и умений при
Лабораторная работа 2	в течение семестра	5 баллов	решении профессиональных задач в рамках усвоенного учебного материала. 4 балла — студент показал хорошие навыки
Лабораторная работа 3	в течение семестра	5 баллов	применения полученных знаний и умений при решении профессиональных задач в рамках усвоенного учебного материала.
Лабораторная работа 4	в течение семестра	5 баллов	3 балла — студент показал удовлетворительное владение навыками применения полученных знаний и умений при решении профессиональ-
Лабораторная работа 5	в течение семестра	5 баллов	ных задач в рамках усвоенного учебного материала.
Лабораторная работа б	в течение семестра	5 баллов	0 баллов – студент продемонстрировал недостаточный уровень владения умениями и навыками при решении профессиональных задач в рамках усвоенного учебного материала.
Проверочная работа	в течение семестра	30 балов	30 баллов — студент показал отличные навыки применения полученных знаний и умений при решении профессиональных задач в рамках усвоенного учебного материала. 20 баллов — студент показал хорошие навыки применения полученных знаний и умений при решении профессиональных задач в рамках усвоенного учебного материала. 10 баллов — студент показал удовлетворительное владение навыками применения полученных знаний и умений при решении профессиональных задач в рамках усвоенного учебного материала. 0 баллов — студент продемонстрировал недостаточный уровень владения умениями и навыками при решении профессиональных задач в рамках усвоенного учебного материала.
итого:		100 баллов	

Критерии оценки результатов обучения по дисциплине:

 $0-64\,\%$ от максимально возможной суммы баллов – «неудовлетворительно» (недостаточный уровень для промежуточной аттестации по дисциплине);

65 – 74 % от максимально возможной суммы баллов – «удовлетворительно» (пороговый

(минимальный) уровень);

- 75 84 % от максимально возможной суммы баллов «хорошо» (средний уровень);
- 85 100 % от максимально возможной суммы баллов «отлично» (высокий (максимальный) уровень)
 - 3 Типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующие процесс формирования компетенций в ходе освоения образовательной программы

3.1 Задания для текущего контроля успеваемости

Тест

1) Введите правильный ответ:

Восьмеричное число заканчивается строчной латинской буквой ...

2) Переменная х является ранжированной в случае

a) $x = 5$	B) x:= 1, 1.25
б) x:= 1011b	$\Gamma) x := 4 + 3i$

3) Установите соответствие:

а) булево равно	1) →
б) присваивание	2) =
в) численное равно	3) :=
г) символьное равно	4) =

4) Функция, выполняющая операцию разложить на множители

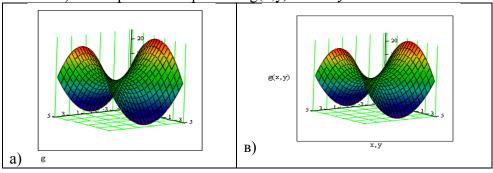
a) factor	в) expand
б) simplify	г) substitute

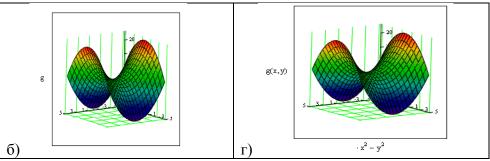
5) Введите правильный ответ:

 $x(x + 1)^2 - 2x(x + 3)$ expand,... $\rightarrow x^3 - 5x$

6) Функция gcd(a,b) находит

a) HOK(a,b)	в) НОД(а,b)
б) остаток от деления а на b	г) С ^b


7) В окне для построения декартова графика пустое поле в середине вертикальной оси, предназначено


а) для значения, устанавливающего размер	в) для дискретной переменной
границы	
б) для функции	г) для названия оси

8) Введите правильный ответ

При построении полярного графика MathCAD показывает круг с n полями ввода, $n=\dots$

9) Как строить поверхность $g(x,y) := x^2 + y^2$

10) Установите соответствие:

а) Функция, создающая диагональную матрицу, элементы главной диагонали которой хранятся в векторе n	1) diag(n)
б) Функция, создающая и заполняющая	2) matrix(m,n,f)
матрицу, элементы которой хранятся в ј-ом	
столбце и і-ой строке равен значению	
функции f	
в) Функция, создающая единичную матрицу	3) identity(n)
порядка п	
г) Функция, приводящая матрицу к ступен-	4) rref(n)
чатому виду с единичным базисным мино-	
ром	

11) Введите правильный ответ:

Если задать матрицу $A := \begin{pmatrix} 1 & 3 & 5 \\ 2 & 0 & 6 \end{pmatrix}$, то значением элемента a_{12} будет...

12) Даны матрицы $A := \begin{pmatrix} -1 - 2 \\ -3 - 7 \end{pmatrix}$ и $B := \begin{pmatrix} 1 & 2 \\ 3 & 7 \end{pmatrix}$ тогда stack(A,B) будет равен

	\-4 - 9/	\49/
a) $\begin{pmatrix} 1 & 2 \\ 3 & 7 \\ 4 & 9 \\ -1 & -2 \\ -3 & -7 \\ -4 & -9 \end{pmatrix}$		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$6) \begin{pmatrix} -1 - 4 \\ -9 - 49 \\ -16 - 81 \end{pmatrix}$		$ \Gamma) \begin{pmatrix} -1 - 2 \\ -3 - 7 \\ -4 - 9 \\ 1 2 \\ 3 7 \\ 4 9 \end{pmatrix} $

13) Перед применением функции root(f(x),x) необходимо

а) упростить выражение	в) указать коэффициенты уравнения
б) задать начальное значение х	г) указать свободные коэффициенты урав-
	нения

14) Решая уравнения или системы уравнений с помощью блока given-find, решение будет

а) точное	в) приближенное
б) минимальное	г) максимальное

15) Решая уравнение $x^4 - 18x^2 + 6 = \sqrt{2x}$ с помощью функции solve, то оператор будет выглядеть следующим образом

a) $x^4 - 18x^2 + 6 = \sqrt{2x}$ solve, $x \to \infty$	B) solve $(x^4 - 18x^2 + 6 - \sqrt{2x}) \rightarrow$
6) $x^4 - 18x^2 + 6 = \sqrt{2x}$ solve→	Γ) solve $\left(x^4 - 18x^2 + 6 - \sqrt{2x}\right), x \rightarrow$

16) Для того чтобы найти четвертую производную функции cos(x), то выражение вычисляющее производную будет выглядеть следующим образом:

$a)\left[\frac{d}{dx}\right]^4\cos(x) \rightarrow$	$B) \frac{d}{dx^4} \cos(X) \to \frac{d^4}{dx^4} \cos(X) \to$
$6)\frac{4d}{dx}\cos(x) \rightarrow$	Γ) $\frac{d^4}{dx^4}\cos(x) \rightarrow$

17) Операция разложения в ряд Тейлора функции $\sin(x)$, причем точка, в окрестности которой строится разложение, равна $\frac{\pi}{6}$, а степень старшего члена в разложении 9, будет иметь вид

a) series[sin (x); $\frac{\pi}{6}$, 9] \rightarrow	B) $\sin(x) \operatorname{series}\left[\frac{\pi}{6}, 9\right] \to$
$β$ sin (x)series, $x = \frac{π}{6}$, $9 →$	r) series(sin (x)); $\frac{\pi}{6}$, 9 \rightarrow

18) Какую кнопку не содержит панель математического анализа

lim a) →a	B) → a-
6) lim _{→a+}	lim r) →∞

Защита лабораторных работ

Лабораторная работа 1. Основы работы в среде MathCAD

- 1) Каковы назначение и возможности MathCAD?
- 2) Как работать с меню в MathCAD?
- 3) Как задаются переменные в MathCAD?
- 4) Какие операторы присваивания вы знаете?
- 5) Как вычисляются производные и интегралы в MathCAD?

Лабораторная работа 2. Построение графиков в среде MathCad

- 1) Как построить график?
- 2) Как построить несколько графиков в одной системе координат?
- 3) Как построить декартовый график?
- 4) Как отформатировать построенный график?
- 5) Как построить график кривой, заданной параметрически?
- 6) Как построить график в полярной системе координат?
- 7) Как построить график поверхности?

Лабораторная работа 3. Вектора и матрицы в среде MathCad

- 1) Как создать матрицу, вектор строку, вектор столбец?
- 2) Какие операторы есть для работы с матрицами?
- 3) Перечислите команды панели инструментов Матрицы.
- 4) Как вставить матричные функции?
- 5) Как выполнять вычисления, если матрица задана в символьном виде?

Лабораторная работа 4. Решение уравнений в среде MathCad

- 1) Как можно решить нелинейное уравнение в MathCAD?
- 2) Как найти начальное приближение корня уравнения?
- 3) Для чего используется функция polyroots?
- 4) Как можно решить систему линейных уравнений?
- 5) Как можно решить систему нелинейных уравнений?

Лабораторная работа 5. Исследование функций в среде MathCad

- 1) Найти точки пересечения с осями.
- 2) Выяснить является ли функция четной, нечетной или общего вида.
- 3) Найти интервалы монотонности и точки экстремума функции.
- 4) Найти интервалы выпуклости и вогнутости графика функции и точки перегиба.
 - 5) Найти асимптоты графика функции.

Лабораторная работа 6. Символьные вычисления в среде MathCad

- 1) Разложить на множители, используя операцию Символы → Фактор;
- Используя операцию Символы → Расширить, разложите по степеням полученное выражение;
- 3) Используя операцию Символы \rightarrow Подобные, сверните полученное выражение по переменной z.

Проверочная работа

Исходные данные

ЗАЛАНИЕ 1.

Решить 2 нелинейных уравнения с точностью до 0,0001

ЗАДАНИЕ 2.

Решить систему 2 нелинейных уравнения с точностью до 0,0001

ЗАДАНИЕ 3.

Решить дифференциальные уравнения первого и второго порядка с точностью до 0,0001

ЗАДАНИЕ 4.

Решить систему двух дифференциальных уравнений первого порядка с точностью до 0.0001

ЗАДАНИЕ 5.

Решить систему линейных уравнения с точностью до 0.0001 матричным методом. Проверку выполнить методом Крамера. Исходные данные взять из таблицы.

ЗАЛАНИЕ 6.

Определите функцию f(t, a). Предварительно определив переменные ω , x, a. Покажите таблицу значений функции. Постройте графики функции f(t, a) для двух разных значений аргумента a.

ЗАДАНИЕ 7.

Для функции, равной выражению f(x, y) найдите первую и вторую частные производные по и . Вычислите частную производную по в точке (1; 0,1). Частные производные в Mathcad находятся так же, как и обычные.

ЗАДАНИЕ 8.

Решите алгебраическое уравнение

ЗАДАНИЕ 9.

Напишите программу для вычисления значений функции y для всех значений аргумента x на заданном интервале $[x_{n}, x_{\kappa}]$ с заданным шагом d_{x} с использованием операторов ветвления if и оператора цикла for.

ЗАДАНИЕ 10.

Для заданной в варианте функции провести полное исследование и построить график.

ЗАДАНИЕ 11.

Создать статистическую совокупность, используя датчики случайных чисел. Количество чисел статистической совокупности m принять самостоятельно. Определить центр группирования статистической совокупности, величину рассеяния. Построить гистограмму с произвольными сегментами разбиения и гистограмму с разбиениями на равные сегменты.

ЗАДАНИЕ 12.

Построить график; решить систему уравнений, найти площадь, ограниченную графиками кривых

ЗАДАНИЕ 13.

Требуется определить функцию, которая выполняет представленные в вариантах задания.