Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования «Комсомольский-на-Амуре государственный университет»

УТВЕРЖДАЮ Декан факультета Факультет авиационной и морской техники Красильникова О.А. «20» 2021 г.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

«Прочность авиационных конструкций»

Специальность	24.05.07 Самолето- и вертолетостроение
Специализация	Самолетостроение
Квалификация выпускника	Инженер
Год начала подготовки (по учебному плану)	2021
Форма обучения	Очная форма
Технология обучения	Традиционная

Курс	Семестр	Трудоемкость, з.е.
3, 4	6, 7	7

Вид промежуточной аттестации	Обеспечивающее подразделение
Зачет с оценкой (2), Курсовая работа	Кафедра «Авиастроение»

Разработчик рабочей программы:

Доцент, Кандидат физико-математических наук

Раши Потянихин Д.А

СОГЛАСОВАНО:

Заведующий кафедрой Кафедра «Авиастроение» Марьин С.Б.

1 Введение

Рабочая программа и фонд оценочных средств дисциплины «Прочность авиационных конструкций» составлены в соответствии с требованиями федерального государственного образовательного стандарта, утвержденного приказом Минобрнауки Российской Федерации ФГОС ВО, утвержденный приказом Минобрнауки России от 04.08.2020 №877, и основной профессиональной образовательной программы подготовки «Самолетостроение» по специальности «24.05.07 Самолето- и вертолетостроение».

Практическая подготовка реализуется на основе:

Профессиональный стандарт 32.004 «СПЕЦИАЛИСТ ПО ПРОЧНОСТНЫМ РАС-ЧЕТАМ АВИАЦИОННЫХ КОНСТРУКЦИЙ».

Обобщенная трудовая функция: D Руководство проектно-расчетными работами по прочности авиационных конструкций.

ТД-4 Анализ и согласование документации для оформления заключений по прочности, НЗ-19 Расчет летательного аппарата на прочность, НЗ-25 - нормы прочности, НЗ-29 - руководство для конструкторов по прочности, НЗ-32 - ожидаемые условия эксплуатации изделия, НУ-1 Проводить расчеты на прочность различных типов конструкций: балочных, ферменных, оболочек; соединений элементов конструкции, НУ-7 Анализировать результаты расчета, полученные методом конечного элемента.

Консультации с ведущими работодателями, объединениями работодателей отрасли, в которых востребованы выпускники: «Протокол КС» (04 20.02.2021).

Н3-11 Основы расчета на прочность и жесткость.

Воспитательная работа реализуется в рамках занятий семинарского типа.

Задачи дисциплины	1. Формирование у студентов знаний, умений, навыков и компетенций, позволяющих проводить расчет авиационных конструкций на прочность, жесткость и устойчивость при воздействии эксплуатационных и разрушающих нагрузок. 2. Получение обучающимися знаний о нагрузках, действующих на летательный аппарат и его агрегаты, методах расчета конструкций летательного аппарата на прочность, жесткость и устойчивость. 3. Получение умений и навыков проведения расчета прочности, жесткости и устойчивости авиационных конструкций при решении задач проектирования, производства и эксплуатации авиационной техники.
Основные разделы / темы дисциплины	1. Расчетные нагрузки, действующие на летательные аппараты 2. Расчет крыла на статическую прочность и жесткость 3. Расчет оперения на статическую прочность и жесткость 4. Расчет систем управления и мотоустановок на статическую прочность и жесткость 5. Особенности прочностного расчета винтокрылов 6. Расчет фюзеляжа на статическую прочность и жесткость 7. Расчет шасси на прочность, жесткость и энергоемкость 8. Аэроупругость

2 Перечень планируемых результатов обучения по дисциплине (модулю), соотнесенных с планируемыми результатами образовательной программы

Процесс изучения дисциплины «Прочность авиационных конструкций» направлен на формирование следующих компетенций в соответствии с $\Phi\Gamma$ ОС ВО и основной образовательной программой (таблица 1):

Таблица 1 – Компетенции и планируемые результаты обучения по дисциплине					
Код и наименование	Индикаторы достижения	Планируемые результаты			
компетенции		обучения по дисциплине			
	Общепрофессиональные				
ОПК-5 Способен	ОПК-5.1 Знает физические и ма-	Знать: методы расчёта агре-			
разрабатывать фи-	тематические модели процессов	гатов самолёта на статиче-			
зические и матема-	изготовления деталей, узлов и	ские и динамические нагруз-			
тические модели ис-	агрегатов авиационных кон-	ки			
следуемых процес-	струкций	Уметь: проводить расчеты			
сов, явлений и объ-	ОПК-5.2 Умеет использовать ме-	на прочность различных ти-			
ектов, относящихся	тоды физического и математиче-	пов балочных, ферменных,			
к профессиональной	ского моделирования	оболочечных конструкций			
сфере деятельности	ОПК-5.3 Умеет применять ос-	Владеть: практическими			
для решения инже-	новные методы физико-	навыками подготовки ис-			
нерных задач	математического анализа для	ходных данных для прове-			
	решения конкретных инженер-	дения прочностных расчётов			
	ных задач	агрегатов			
	Профессиональные				
ПК-3 Способен про-	ПК-3.1 Знает методы расчетов на	Знать: нормативно-			
водить прочностные	прочность и устойчивость раз-	техническую документацию:			
расчеты авиацион-	личных типов конструкций при	нормы прочности, авиаци-			
ных конструкций	статических и динамических	онные правила			
при проектировании	нагрузках	Уметь: проводить расчеты			
и конструировании	ПК-3.2 Умеет пользоваться про-	на прочность соединений			
авиационной техни-	граммным обеспечением для мо-	элементов конструкций ле-			
ки	делирования напряженного со-	тательных аппаратов			
	стояния при статических и дина-	Владеть: практическими			
	мических нагрузках; использо-	навыками проведения расче-			
	вать нормативно-техническую	тов по определению манев-			
	документацию (нормы прочно-	ренных нагрузок, нагрузок			
	сти, авиационные правила, руко-	при полете в неспокойном			
	водство для конструкторов по	воздухе, на взлетно-			
	прочности)	посадочных режимах; прак-			
	ПК-3.3 Владеет навыками анали-	тическими навыками ис-			
	за результатов расчетных и экс-	пользования пакетов при-			
	периментальных исследований в	кладных программ для			
	рамках проектно-	прочностных расчетов			
	конструкторской и производ-				
	ственно-технологической дея-				
	тельности				

3 Место дисциплины (модуля) в структуре образовательной программы

Дисциплина «Прочность авиационных конструкций» изучается на 3, 4 курсе, 6, 7 семестре.

Дисциплина входит в состав блока 1 «Дисциплины (модули)» и относится к обязательной части.

Для освоения дисциплины необходимы знания, умения, навыки и / или опыт практической деятельности, сформированные в процессе изучения дисциплин / практик: «Теоретическая механика», «Численные методы», «Теория механизмов и машин», «Сопротивление материалов», «Аналитическая механика и теория колебаний», «Строительная механика самолетов», «Аналитические и сеточные методы математической физики», «Теория упругости, пластичности и ползучести», «Аэродинамика самолетов», «Метрология, стандартизация и сертификация», «Строительная механика самолетов», «Теория упругости, пластичности и ползучести».

Знания, умения и навыки, сформированные при изучении дисциплины «Прочность авиационных конструкций», будут востребованы при изучении последующих дисциплин: «Производственная практика (научно-исследовательская работа)», «Производственная практика (преддипломная практика)», «Механика разрушения», «Проектирование конструкций из композиционных материалов», «Применение пакетов прикладных программ в механике конструкций», «Управление качеством», «Производственная практика (конструкторская практика)», «Производственная практика (технологическая (проектнотехнологическая) практика), 11 семестр», «Производственная практика (преддипломная практика)».

Дисциплина «Прочность авиационных конструкций» частично реализуется в форме практической подготовки. Практическая подготовка осуществляется путем проведения практических занятий, выполнения курсовой работы.

Дисциплина «Прочность авиационных конструкций» в рамках воспитательной работы направлена на формирование у обучающихся активной гражданской позиции, уважения к правам и свободам человека, знания правовых основ и законов, воспитание чувства ответственности или умения аргументировать, самостоятельно мыслить, развивает творчество, профессиональные умения или творчески развитой личности, системы осознанных знаний, ответственности за выполнение учебно-производственных заданий и т.д.

4 Объем дисциплины (модуля) в зачетных единицах с указанием количества академических часов, выделенных на контактную работу обучающихся с преподавателем (по видам учебных занятий) и на самостоятельную работу обучающихся

Общая трудоемкость (объем) дисциплины составляет 7 з.е., 252 акад. час.

Распределение объема дисциплины (модуля) по видам учебных занятий представлено в таблице 2.

T ~	0.5	/	` ~	
Таблица 7	 Ооъем лиспиплины 	DUMUMUM	то вилам учесных	иитрисс

Объем дисциплины	Всего академических часов
Общая трудоемкость дисциплины	252
Контактная аудиторная работа обучающихся с преподавате- лем (по видам учебных занятий), всего	112
В том числе:	

занятия лекционного типа (лекции и иные учебные занятия, предусматривающие преимущественную передачу учебной информации педагогическими работниками)	48
занятия семинарского типа (семинары, практические занятия, практикумы, лабораторные работы, коллоквиумы и иные аналогичные занятия)	64 (в т. ч. 64 в форме практической подготовки)
Самостоятельная работа обучающихся и контактная работа, включающая групповые консультации, индивидуальную работу обучающихся с преподавателями (в том числе индивидуальные консультации); взаимодействие в электронной информационнообразовательной среде вуза	140 (в т. ч. 60 в форме практической подготовки)
Промежуточная аттестация обучающихся — Зачет с оценкой (2), Курсовая работа	0

5 Содержание дисциплины (модуля), структурированное по темам (разделам) с указанием отведенного на них количества академических часов и видов учебной работы

Таблица 3 – Структура и содержание дисциплины (модуля)

Наименование разделов, тем и содержание материала	Виды учебной работы, включая самостоятельную работу обучающихся и трудоемкость (в часах)			-
	Контактная работа преподавателя с обучающи-			CPC
	Лекции	Семинарские (практические занятия)	Лабораторные занятия	
	Семестр	6		
1. Расчетные нагрузк	си, действующие на летательные аппараты			
Маневренные нагрузки, действующие на самолёт. Болтаночные нагрузки, действующие на самолёт.	2	2*	-	2
Основные расчетные полетные случаи нагружения самолёта. Построение диаграмм ICAO для маневра и болтанки.	2	2*	-	2
Требования к прочности винто- крылых аппаратов нормальной категории. Нагрузки и конструк- тивные ограничения. Нагрузки в полёте, на земле, на воде.	2	2*	-	2

2. Расчет крыла н	а статическун	о прочность и жест	кость	
Построение эпюр сил и моментов для крыла.	2	2*	-	2
Проектировочный расчет поперечного сечения прямого крыла.	2	2*		2
Проверочный расчет поперечного сечения прямого крыла.	2	2*	-	2
Расчет нормальных и усиленных нервюр.	2	2*	-	2
Особенности расчета стреловидного крыла.	2	2*	-	2
Особенности расчета треугольного крыла.	2	2*		2
Изгибная и крутильная деформации прямого и стреловидного крыльев.	2	2*		2
Выполнение расчетного зада- ния контрольной работы	-	-	-	12*
3. Расчет оперения	на статическу	о прочность и жес	сткость	
Расчетные нагрузки, действующие на оперение. Расчёт рулей и элеронов на прочность и жёсткость.	2	2*	-	2
Расчет оперения с трехшарнирной подвеской руля. Расчёт цельноповоротного стабилизатора.	2	2*	-	2
4. Расчет систем управления и м	отоустановок	на статическую пр	очность и жес	сткость
Расчет элементов механической проводки системы управления.	2	2*	-	2
Расчетные случаи нагружения мотоустановок.	2	2*	-	2
5. Особенности прочностного расчета винтокрылов				
Расчётные случаи нагружения винтокрылов.	2	2*	-	2
Расчёт лопасти несущего винта на статическую прочность.	2	2*	-	2
ИТОГО за 6 семестр	32	32	-	44

Семестр 7				
6. Расчет фюзеляжа	на статическ	сую прочность и же	сткость	
Расчётные случаи нагружения фюзеляжа. Построение эпюр сил и моментов по длине фюзеляжа.	2	4*	-	6
Расчёт поперечных сечений фюзеляжа. Расчёт шпангоутов.	2	4*	-	6
Расчёт фонаря и носовой части фюзеляжа. Расчёт деформаций фюзеляжа. Расчёт фюзеляжей в зоне больших вырезов.	2	4*	-	6
7. Расчет шасси на	прочность, ж	есткость и энергое	мкость	
Расчётные случаи нагружения шасси. Расчёт шасси балочного типа и с рычажной подвеской колеса.	2	4*	-	6
Подбор колёс для опор шасси. Проектировочный расчёт жид-костно-газового амортизатора.	2	4*	-	6
	8. Аэроупру	тость		
Уравнения свободных колебаний несущей поверхности. Свободные крутильные колебания крыла. Свободные изгибные колебания крыла.	2	4*	-	6
Свободные изгибно-крутильные колебания крыла. Аэродинамика вибрирующего крыла.	2	4*	-	6
Расчёт изгибно-крутильного флаттера и дивергенции крыла. Влияние конструктивных параметров крыла на критические скорости флаттера и дивергенции.	2	4*	-	6
Выполнение расчетного зада- ния курсовой работы	-	-	-	48*
ИТОГО за 7 семестр	16	32	-	96
ИТОГО по дисциплине	48	64	-	140

^{*} реализуется в форме практической подготовки

6 Внеаудиторная самостоятельная работа обучающихся по дисциплине (модулю)

При планировании самостоятельной работы студенту рекомендуется руководствоваться следующим распределением часов на самостоятельную работу (таблица 4):

Таблица 4 – Рекомендуемое распределение часов на самостоятельную работу

Компоненты самостоятельной работы	Количество часов
Изучение теоретических разделов дисциплины	32
Подготовка к занятиям семинарского типа	48
Подготовка и оформление контрольной работы	12
Подготовка и оформление курсовой работы	48
ИТОГО	140

7 Оценочные средства для проведения текущего контроля и промежуточной аттестации обучающихся по дисциплине (модулю)

Фонд оценочных средств для проведения текущего контроля успеваемости и промежуточной аттестации представлен в Приложении 1.

Полный комплект контрольных заданий или иных материалов, необходимых для оценивания результатов обучения по дисциплине (модулю), практике хранится на кафедре-разработчике в бумажном и электронном виде.

8 Учебно-методическое и информационное обеспечение дисциплины (модуля)

- 1 Кан, С. Н. Расчет самолета на прочность / С. Н. Кан, И. А. Свердлов Москва: Машиностроение, 1966. 520 с.
- 2 Конструкция и прочность летательных аппаратов гражданской авиации: Учебник для вузов гражданской авиации / М. С. Воскобойник, П. Ф. Максютинский, К. Д. Миртов и др.; Под общ. ред. К. Д. Миртова, Ж. С. Черненко. Москва: Машиностроение, 1991. 448 с.
- 3 Одиноков, Ю. Г. Расчет самолета на прочность / Ю. Г. Одиноков Москва: Машиностроение, 1973. 392 с.
- 4 Стригунов, В. М. Расчет самолета на прочность: учебник для вузов / В. М. Стригунов. Москва: Машиностроение, 1984.-396 с.

8.2 Дополнительная литература

- 1 Житомирский, Г. И. Конструкция самолетов: Учебник для студентов авиационных специальностей вузов / Г. И. Житомирский. Москва: Машиностроение, 1995. 416 с.
- 2 Арепьев, А. Н. Проектирование легких пассажирских самолетов / А. Н. Арепьев. Москва: Издательство МАИ, 2006. 640 с.
- 3. Дмитриев, В. Г. Основы прочности и проектирование силовой конструкции летательных аппаратов / В. Г. Дмитриев, В. М. Чижов. Москва: Бумажная галерея, 2005.-416 с.

- 4 Строительная механика летательных аппаратов: Учебник для авиационных специальностей вузов / И. Ф. Образцов, Л. А. Булычев, В. В. Васильев и др.; Под ред. И. Ф. Образцова. Москва: Машиностроение, 1986. 536 с.
- 5 Тарасов, Ю. Л. Расчет на прочность элементов конструкции самолета: Учеб. Пособие. Изд. 3-е, перераб. / Ю. Л. Тарасов, Б. А. Лавров Самара: Самарский гос. аэрокосм. ун-т, 2000.-112 с.

8.3 Методические указания для студентов по освоению дисциплины

- 1 Чепурных, И. В. Прочность конструкций самолётов летательных аппаратов: учебное пособие / И. В. Чепурных. Комсомольск-на-Амуре: ФГБОУ ВПО «КнАГТУ», 2013.-137 с.
- 2 Чепурных, И. В. Расчет крыла и оперения самолета на прочность и жесткость: учеб. пособие / И. В. Чепурных. Комсомольск-на-Амуре: ФГБОУ ВО «КнАГТУ», 2017. $106~\rm c.$
- 3 Гусева, Р. И. Основы расчета самолета на прочность: учебное пособие / Р. И. Гусева. Комсомольск-на-Амуре: ФГБОУ ВО «КнАГУ», 2020. 79 с.

8.4 Современные профессиональные базы данных и информационные справочные системы, используемые при осуществлении образовательного процесса по дисциплине

- 1 Электронно-библиотечная система ZNANIUM.COM Договор № 4997 эбс ИКЗ 21 1 2727000769 270301001 0010 004 6311 244 от 13 апреля 2021 г. (с 17 апреля 2021 г. по 16 апреля 2022 г.).
- 2 Электронно-библиотечная система IPRbooks Лицензионный договор № ЕП 44/4 на предоставление доступа к электронно-библиотечной системе IPRbooks ИКЗ 21 1 2727000769 270301001 0010 003 6311 244 от 05 февраля 2021 г. (с 27 марта 2021 г. по 27 марта 2022 г.).
- 3 Образовательная платформа "Юрайт". Договор № ЕП44/2 на оказание услуг по предоставлению доступа к образовательной платформе ИКЗ 21 1 2727000769 270301001 0010001 6311 244 от 02 февраля 2021 г. (с 07 февраля 2021 г. по 07 февраля 2022 г.).
- 4 Научная электронная библиотека eLIBRARY.RU. Договор № ЕП 44/3 на оказание услуг доступа к электронным изданиям ИКЗ 211 272 7000769 270 301 001 0010 002 6311 244 от 04 февраля 2021 г. (с 04 февраля 2021 г. по 04 февраля 2030 г.).
- 5 Справочная правовая система Консультант Плюс. Договор № 45 от 17 мая 2017 (бессрочный).
- 6 Президентская библиотека им. Б.Н. Ельцина https://www.prlib.ru/ Безвозмездное пользование (открытый доступ).
- 7 Национальная электронная библиотека (НЭБ) https://rusneb.ru/ Безвозмездное пользование (открытый доступ).
- 8 Научная электронная библиотека "КиберЛенинка" https://cyberleninka.ru/ Безвозмездное пользование (открытый доступ).

8.5 Перечень ресурсов информационно-телекоммуникационной сети "Интернет», необходимых для освоения дисциплины (модуля)

- 1 Национальная платформа открытого образования. https://openedu.ru/
- 2 Репозиторий Самарского университета: коллекция «Авиация» http://repo.ssau.ru/handle/Aviaciya/396
- 3 Федеральное агентство воздушного транспорта (РОСАВИАЦИЯ): Федеральные авиационные правила https://favt.gov.ru/dokumenty-federalnye-pravila/?page=1

8.6 Лицензионное программное обеспечение, используемое при осуществлении образовательного процесса по дисциплине

Таблица 5 – Перечень используемого программного обеспечения

Наименование ПО	Реквизиты / условия использования		Реквизиты / условия использования	
OpenOffice	Свободная лицензия, условия использования по ссылке:			
	https://www.openoffice.org/license.html			
ANSYS Academic Research	Условия использования: Academic Program(s)			
Mechanical and CFD	Лицензия № 1071235			

9 Организационно-педагогические условия

Организация образовательного процесса регламентируется учебным планом и расписанием учебных занятий. Язык обучения (преподавания) - русский. Для всех видов аудиторных занятий академический час устанавливается продолжительностью 45 минут.

При формировании своей индивидуальной образовательной траектории обучающийся имеет право на перезачет соответствующих дисциплин и профессиональных модулей, освоенных в процессе предшествующего обучения, который освобождает обучающегося от необходимости их повторного освоения.

9.1 Образовательные технологии

Учебный процесс при преподавании курса основывается на использовании традиционных, инновационных и информационных образовательных технологий. Традиционные образовательные технологии представлены лекциями и семинарскими (практическими) занятиями. Инновационные образовательные технологии используются в виде широкого применения активных и интерактивных форм проведения занятий. Информационные образовательные технологии реализуются путем активизации самостоятельной работы студентов в информационной образовательной среде.

9.2 Занятия лекционного типа

Лекционный курс предполагает систематизированное изложение основных вопросов учебного плана.

На первой лекции лектор обязан предупредить студентов, применительно к какому базовому учебнику (учебникам, учебным пособиям) будет прочитан курс.

Лекционный курс должен давать наибольший объем информации и обеспечивать более глубокое понимание учебных вопросов при значительно меньшей затрате времени, чем это требуется большинству студентов на самостоятельное изучение материала.

9.3 Занятия семинарского типа

Семинарские занятия представляют собой детализацию лекционного теоретического материала, проводятся в целях закрепления курса и охватывают все основные разделы.

Основной формой проведения семинаров является обсуждение наиболее проблемных и сложных вопросов по отдельным темам, а также разбор примеров и ситуаций в аудиторных условиях. В обязанности преподавателя входят: оказание методической помощи и консультирование студентов по соответствующим темам курса.

Активность на семинарских занятиях оценивается по следующим критериям:

- ответы на вопросы, предлагаемые преподавателем;
- участие в дискуссиях;

- выполнение проектных и иных заданий;
- ассистирование преподавателю в проведении занятий.

Ответ должен быть аргументированным, развернутым, не односложным, содержать ссылки на источники.

Доклады и оппонирование докладов проверяют степень владения теоретическим материалом, а также корректность и строгость рассуждений.

Оценивание заданий, выполненных на семинарском занятии, входит в накопленную оценку.

9.4 Самостоятельная работа обучающихся по дисциплине (модулю)

Самостоятельная работа студентов — это процесс активного, целенаправленного приобретения студентом новых знаний, умений без непосредственного участия преподавателя, характеризующийся предметной направленностью, эффективным контролем и оценкой результатов деятельности обучающегося.

Цели самостоятельной работы:

- систематизация и закрепление полученных теоретических знаний и практических умений студентов;
 - углубление и расширение теоретических знаний;
- формирование умений использовать нормативную и справочную документацию, специальную литературу;
- развитие познавательных способностей, активности студентов, ответственности и организованности;
- формирование самостоятельности мышления, творческой инициативы, способностей к саморазвитию, самосовершенствованию и самореализации;
 - развитие исследовательских умений и академических навыков.

Самостоятельная работа может осуществляться индивидуально или группами студентов в зависимости от цели, объема, уровня сложности, конкретной тематики.

Технология организации самостоятельной работы студентов включает использование информационных и материально-технических ресурсов университета.

Контроль результатов внеаудиторной самостоятельной работы студентов может проходить в письменной, устной или смешанной форме.

Студенты должны подходить к самостоятельной работе как к наиважнейшему средству закрепления и развития теоретических знаний, выработке единства взглядов на отдельные вопросы курса, приобретения определенных навыков и использования профессиональной литературы.

9.5 Методические указания для обучающихся по освоению дисциплины

При изучении дисциплины обучающимся целесообразно выполнять следующие рекомендации:

- 1. Изучение учебной дисциплины должно вестись систематически.
- 2. После изучения какого-либо раздела по учебнику или конспектным материалам рекомендуется по памяти воспроизвести основные термины, определения, понятия раздела.
- 3. Особое внимание следует уделить выполнению отчетов по практическим занятиям и индивидуальным комплексным заданиям на самостоятельную работу.
- 4. Вся тематика вопросов, изучаемых самостоятельно, задается на лекциях преподавателем. Им же даются источники (в первую очередь вновь изданные в периодической научной литературе) для более детального понимания вопросов, озвученных на лекции.

При самостоятельной проработке курса обучающиеся должны:

- просматривать основные определения и факты;

- повторить законспектированный на лекционном занятии материал и дополнить его с учетом рекомендованной по данной теме литературы;
- изучить рекомендованную литературу, составлять тезисы, аннотации и конспекты наиболее важных моментов;
 - самостоятельно выполнять задания, аналогичные предлагаемым на занятиях;
 - использовать для самопроверки материалы фонда оценочных средств.

10 Описание материально-технического обеспечения, необходимого для осуществления образовательного процесса по дисциплине (модулю)

10.1 Учебно-лабораторное оборудование

Таблица 6 – Перечень учебного и лабораторного оборудования

Аудитория	Наименование аудитории (лабо- ратории)	Используемое оборудование
Ауд. 227 /3	Лекционная ауди- тория ФАМТ	Мультимедийное оборудование
Ауд. 225 /3	Компьютерный класс кафедры AC	Мультимедийное оборудование, ПЭВМ

10.2 Технические и электронные средства обучения

Лекционные занятия

Аудитории для лекционных занятий укомплектованы мебелью и техническими средствами обучения, служащими для представления учебной информации большой аудитории (проектор, экран, компьютер).

Для реализации дисциплины подготовлены следующие презентации:

- 1. Расчетные нагрузки, действующие на летательные аппараты
- 2. Расчет крыла на статическую прочность и жесткость
- 3. Расчет оперения на статическую прочность и жесткость
- 4. Расчет систем управления и мотоустановок на статическую прочность и жесткость
- 5. Особенности прочностного расчета винтокрылов
- 6. Расчет фюзеляжа на статическую прочность и жесткость
- 7. Расчет шасси на прочность, жесткость и энергоемкость
- 8. Аэроупругость

Практические занятия.

Аудитории для практических занятий укомплектованы специализированной мебелью и техническими средствами обучения (проектор, экран, компьютер).

Самостоятельная работа.

Помещения для самостоятельной работы оснащены компьютерной техникой с возможностью подключения к сети «Интернет» и доступом к электронной информационнообразовательной среде КнАГУ:

- читальный зал НТБ КнАГУ;
- компьютерные классы (ауд. 225/3).

11 Иные сведения

Методические рекомендации по обучению лиц с ограниченными возможностями здоровья и инвалидов

Освоение дисциплины обучающимися с ограниченными возможностями здоровья может быть организовано как совместно с другими обучающимися, так и в отдельных группах. Предполагаются специальные условия для получения образования обучающимися с ограниченными возможностями здоровья.

Профессорско-педагогический состав знакомится с психолого-физиологическими особенностями обучающихся инвалидов и лиц с ограниченными возможностями здоровья, индивидуальными программами реабилитации инвалидов (при наличии). При необходимости осуществляется дополнительная поддержка преподавания тьюторами, психологами, социальными работниками, прошедшими подготовку ассистентами.

В соответствии с методическими рекомендациями Минобрнауки РФ (утв. 8 апреля 2014 г. N АК-44/05вн) в курсе предполагается использовать социально-активные и рефлексивные методы обучения, технологии социокультурной реабилитации с целью оказания помощи в установлении полноценных межличностных отношений с другими студентами, создании комфортного психологического климата в студенческой группе. Подбор и разработка учебных материалов производятся с учетом предоставления материала в различных формах: аудиальной, визуальной, с использованием специальных технических средств и информационных систем.

Освоение дисциплины лицами с OB3 осуществляется с использованием средств обучения общего и специального назначения (персонального и коллективного использования). Материально-техническое обеспечение предусматривает приспособление аудиторий к нуждам лиц с OB3.

Форма проведения аттестации для студентов-инвалидов устанавливается с учетом индивидуальных психофизических особенностей. Для студентов с ОВЗ предусматривается доступная форма предоставления заданий оценочных средств, а именно:

- в печатной или электронной форме (для лиц с нарушениями опорнодвигательного аппарата);
- в печатной форме или электронной форме с увеличенным шрифтом и контрастностью (для лиц с нарушениями слуха, речи, зрения);
 - методом чтения ассистентом задания вслух (для лиц с нарушениями зрения).

Студентам с инвалидностью увеличивается время на подготовку ответов на контрольные вопросы. Для таких студентов предусматривается доступная форма предоставления ответов на задания, а именно:

- письменно на бумаге или набором ответов на компьютере (для лиц с нарушениями слуха, речи);
- выбором ответа из возможных вариантов с использованием услуг ассистента (для лиц с нарушениями опорно-двигательного аппарата);
 - устно (для лиц с нарушениями зрения, опорно-двигательного аппарата).

При необходимости для обучающихся с инвалидностью процедура оценивания результатов обучения может проводиться в несколько этапов.

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

по дисциплине

«Прочность авиационных конструкций»

Специальность	24.05.07 Самолето- и вертолетостроение
Специализация	Самолетостроение
Квалификация выпускника	Специалист
Год начала подготовки (по учебному плану)	2021
Форма обучения	Очная форма
Технология обучения	Традиционная

Курс	Семестр	Трудоемкость, з.е.
3, 4	6, 7	7

Вид промежуточной аттестации	Обеспечивающее подразделение	
Зачет с оценкой (2), Курсовая работа	Кафедра «Авиастроение»	

1 Перечень планируемых результатов обучения по дисциплине (модулю), соотнесенных с планируемыми результатами образовательной программы

Таблица 1 – Компетенции и планируемые результаты обучения по дисциплине

Код и наименование	Индикаторы достижения	Планируемые результаты
компетенции	тидикаторы достижения	обучения по дисциплине
компотонции	Общепрофессиональные	обутения по дисциплине
	Сощепрофессиональные	
ОПК-5 Способен	ОПК-5.1 Знает физические и ма-	Знать: методы расчёта агре-
разрабатывать фи-	тематические модели процессов	гатов самолёта на статиче-
зические и матема-	изготовления деталей, узлов и	ские и динамические нагруз-
тические модели ис-	агрегатов авиационных кон-	ки
следуемых процес-	струкций	Уметь: проводить расчеты
сов, явлений и объ-	ОПК-5.2 Умеет использовать ме-	на прочность различных ти-
ектов, относящихся	тоды физического и математиче-	пов балочных, ферменных,
к профессиональной	ского моделирования	оболочечных конструкций
сфере деятельности	ОПК-5.3 Умеет применять ос-	Владеть: практическими
для решения инже-	новные методы физико-	навыками подготовки ис-
нерных задач	математического анализа для	ходных данных для прове-
	решения конкретных инженер-	дения прочностных расчётов
	ных задач	агрегатов
	Профессиональные	
ПК-3 Способен про-	ПК-3.1 Знает методы расчетов на	Знать: нормативно-
водить прочностные	прочность и устойчивость раз-	техническую документацию:
расчеты авиацион-	личных типов конструкций при	нормы прочности, авиаци-
ных конструкций	статических и динамических	онные правила
при проектировании	нагрузках	Уметь: проводить расчеты
и конструировании	ПК-3.2 Умеет пользоваться про-	на прочность соединений
авиационной техни-	граммным обеспечением для мо-	элементов конструкций ле-
ки	делирования напряженного со-	тательных аппаратов
	стояния при статических и дина-	Владеть: практическими
	мических нагрузках; использо-	навыками проведения расче-
	вать нормативно-техническую	тов по определению манев-
	документацию (нормы прочно-	ренных нагрузок, нагрузок
	сти, авиационные правила, руко-	при полете в неспокойном
	водство для конструкторов по	воздухе, на взлетно-
	прочности)	посадочных режимах; прак-
	ПК-3.3 Владеет навыками анали-	тическими навыками ис-
	за результатов расчетных и экс-	пользования пакетов при-
	периментальных исследований в	кладных программ для
	рамках проектно-	прочностных расчетов
	конструкторской и производ-	
	ственно-технологической дея-	
	тельности	

Таблица 2 – Паспорт фонда оценочных средств

Контролируемые разделы (темы) дисциплины	Формируемая компетенция	Наименование оценочного средства	Показатели оценки
		Семестр 6	
1. Расчетные нагрузки, действующие на летательные аппараты	ОПК-5 ПК-3	Тест №1	Продемонстрировано умение выбирать метод решения задачи, обосновать применение расчетных формул, продемонстрировать навык проведения вычислений.
2. Расчет крыла на статическую прочность и жесткость	ОПК-5 ПК-3	Тест №2	Продемонстрировано умение выбирать метод решения задачи, обосновать применение расчетных формул, продемонстрировать навык проведения вычислений.
		Контрольная работа	Продемонстрировано умение выбирать метод решения задачи, обосновать применение расчетных формул, продемонстрировать навык проведения вычислений.
3. Расчет оперения на статическую прочность и жесткость	ОПК-5 ПК-3	Тест №3	Продемонстрировано умение выбирать метод решения задачи, обосновать применение расчетных формул, продемонстрировать навык проведения вычислений.
4. Расчет систем управления и мото- установок на стати- ческую прочность и жесткость.	ОПК-5 ПК-3	Тест №4	Продемонстрировано умение выбирать метод решения задачи, обосновать применение расчетных формул, продемонстрировать навык проведения вычислений.
5. Особенности прочностного расчета винтокрылов	ОПК-5 ПК-3	Тест №5	Продемонстрировано умение выбирать метод решения задачи, обосновать применение расчетных формул, продемонстрировать навык проведения вычислений.

	Семестр 7				
6. Расчет фюзеляжа на статическую прочность и жесткость	ОПК-5 ПК-3	Тест №6	Продемонстрировано умение выбирать метод решения задачи, обосновать применение расчетных формул, продемонстрировать навык проведения вычислений.		
7. Расчет шасси на прочность, жесткость и энергоемкость	ОПК-5 ПК-3	Тест №7	Продемонстрировано умение выбирать метод решения задачи, обосновать применение расчетных формул, продемонстрировать навык проведения вычислений.		
8. Аэроупругость	ОПК-5 ПК-3	Тест №8	Продемонстрировано умение выбирать метод решения задачи, обосновать применение расчетных формул, продемонстрировать навык проведения вычислений.		
Разделы 1,2,6,8	ОПК-5 ПК-3	Курсовая работа	Полнота и правильность выполнения задания		

2 Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующие процесс формирования компетенций

Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности, представлены в виде технологической карты дисциплины (таблица 3).

Таблица 3 – Технологическая карта

Наименование оценочного средства	Сроки выполнения	Шкала оценивания	Критерии оценивания			
Ι	6 семестр Промежуточная аттестация в форме «Зачет с оценкой»					
Тест №1	3 неделя	5 баллов	5 баллов — студент правильно выполнил задание теста, показал отличные умения и навыки в рамках усвоенного учеб-			
Тест №2	10 неделя	5 баллов	нал и навыки в рамках усвоенного учео ного материала. 4 балла — студент выполнил задание теста с незначительными недочетами, по-			
Тест №3	12 неделя	5 баллов	казал хорошие умения и навыки в рамках усвоенного учебного материала. 3 балла – студент выполнил задание те-			
Тест №4	14 неделя	5 баллов	ста не полностью либо с существенными недочетами, показал удовлетворительные умения и навыки в рамках усво-			
Тест №5	16 неделя	5 баллов	енного учебного материала. 0 баллов — студент не выполнил задание теста либо выполнил неверно.			

Контрольная работа	12 неделя	15 баллов	15 баллов — Студент полностью выполнил задание, показал отличные умения и навыки в рамках усвоенного учебного материала, контрольная работа оформлена аккуратно и в соответствии с предъявляемыми требованиями. При защите контрольной работы студент продемонстрировал умение выбирать метод решения задачи, обосновать применение расчетных формул, навык проведения вычислений. От 3 до 12 баллов — Студент не полностью выполнил задание (не смог обосновать оптимальность предложенного решения, допустил неточности, недостатки в оформлении, допустил ошибки в расчетах, не смог интерпретировать результаты расчетов и т. д.). При защите контрольной работы студент не в полной мере продемонстрировал умение выбирать метод решения задачи, обосновать применение расчетных формул, навык проведения вычислений. О баллов - Студент не выполнил задание, или студент выполнил задание, или студент выполнил задание, но при защите контрольной работы не смог объяснить ход решения задачи и не понимает смысла написанного.
итого:		40 баллов	

Критерии оценки результатов обучения по дисциплине:

- 0-64~% от максимально возможной суммы баллов «неудовлетворительно» (недостаточный уровень для промежуточной аттестации по дисциплине);
- 65 74 % от максимально возможной суммы баллов «удовлетворительно» (пороговый (минимальный) уровень);
- 75 84 % от максимально возможной суммы баллов «хорошо» (средний уровень);
- 85-100~% от максимально возможной суммы баллов «отлично» (высокий (максимальный) уровень)

7 семестр Промежуточная аттестация в форме «Зачет с оценкой»			
Тест №6	3 неделя	5 баллов	5 баллов — студент правильно выполнил задание теста, показал отличные умения и навыки в рамках усвоенного учебного материала.

Тест №7	10 неделя	5 баллов	4 балла — студент выполнил задание теста с незначительными недочетами, показал хорошие умения и навыки в рамках усвоенного учебного материала. 3 балла — студент выполнил задание
Тест №8	12 неделя	5 баллов	теста не полностью либо с существенными недочетами, показал удовлетворительные умения и навыки в рамках усвоенного учебного материала. О баллов — студент не выполнил задание теста либо выполнил неверно.
итого:		15 баллов	

Критерии оценки результатов обучения по дисциплине:

- 0-64 % от максимально возможной суммы баллов «неудовлетворительно» (недостаточный уровень для промежуточной аттестации по дисциплине);
- 65 74 % от максимально возможной суммы баллов «удовлетворительно» (пороговый (минимальный) уровень);
- 75 84 % от максимально возможной суммы баллов «хорошо» (средний уровень);
- 85-100~% от максимально возможной суммы баллов «отлично» (высокий (максимальный) уровень)

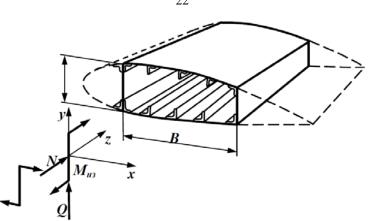
7 семестр Промежуточная аттестация в форме «КР»

По результатам защиты курсового проекта (работы) выставляется оценка по 4-балльной шкале оценивания

- оценка «отлично» выставляется студенту, если в работе содержатся элементы научного творчества и делаются самостоятельные выводы, достигнуты все результаты, указанные в задании, качество оформления отчета соответствует установленным в вузе требованиям и при защите студент проявил отличное владение материалом работы и способность аргументировано отвечать на поставленные вопросы по теме работы;
- оценка «хорошо» выставляется студенту, если в работе достигнуты все результаты, указанные в задании, качество оформления отчета соответствует установленным в вузе требованиям и при защите студент проявил хорошее владение материалом работы и способность аргументировано отвечать на поставленные вопросы по теме работы;
- оценка «удовлетворительно» выставляется студенту, если в работе достигнуты основные результаты, указанные в задании, качество оформления отчета в основном соответствует установленным в вузе требованиям и при защите студент проявил удовлетворительное владение материалом работы и способность отвечать на большинство поставленных вопросов по теме работы;
- оценка «неудовлетворительно» выставляется студенту, если в работе не достигнуты основные результаты, указанные в задании или качество оформления отчета не соответствует установленным в вузе требованиям, или при защите студент проявил неудовлетворительное владение материалом работы и не смог ответить на большинство поставленных вопросов по теме работы.

3 Типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующие процесс формирования компетенций в ходе освоения образовательной программы

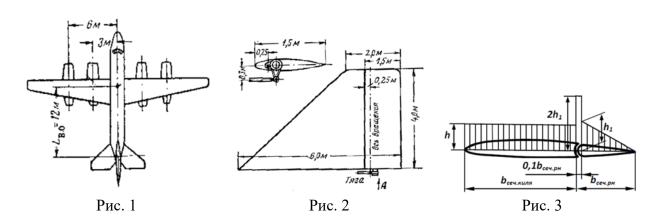
3.1 Задания для текущего контроля успеваемости


Тесты

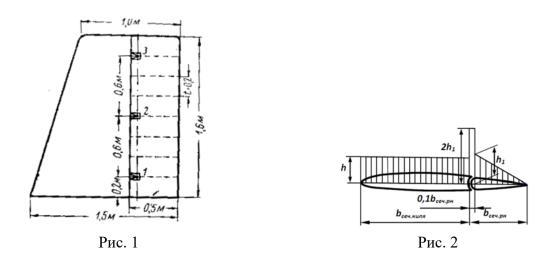
Тест №1 «Расчетные нагрузки, действующие на летательные аппараты»

- 1. Самолёт, совершающий горизонтальный полёт на высоте $H_1=8000$ м, входит в отвесное пикирование и по достижении высоты $H_4=2000$ м начинает выход из пикирования. Полётный вес самолёта G=60 кH, площадь крыла S=30 м², радиус входа в пикирование $r_{\rm BX}=1000$ м, максимальная эксплуатационная перегрузка $n_{\rm max}^{9}=6$. Коэффициент подъёмной силы в горизонтальном полёте на высоте H_1 , $c_{y\,{\rm FH}}=0.33$. Коэффициент лобового сопротивления при установившемся отвесном пикировании $c_{x0}=0.062$. Требуется определить:
 - нормальную перегрузку в точках 1.2,3 траектории;
- минимальную потерю высоты при выходе из пикирования. Упрощающие гипотезы:
- вход и выход из пикирования происходят по дугам окружностей, причём скорость самолёта в процессе выполнения этих манёвров считается неизменной;
- движение самолёта перед началом выхода из пикирования считать установив-шимся;
- отвесное пикирование осуществляется при работе силовой установки в режиме «малый газ».
- 2. Определить болтаночную перегрузку при полёте самолёта истребителя у земли со скоростью V=300 м/с. Исходные данные для расчёта: скорость вертикального порыва W=15 м/с, удельная нагрузка на крыло p=G/S=3 кН/м², $c_v^\alpha=5$ рад⁻¹.
- 3. Построить область изменения предельных скоростей по высоте для самолёта, имеющего максимальную скорость у земли $V_{max} = 1080$ км/час, $q_{max} \,_{max} = 1,2 \, q_{max}$, ограничение по температуре нагрева общивки $t_{ob} \,^{\wedge} \leq 100 \,^{\circ}$ С. Принять ограничение по $c_{y \,_{DO}} = 1,0 \,$ в крейсерской конфигурации, $p = 5 \,$ кН/м² Расчёт провести для высот 0,5.11.15 км.

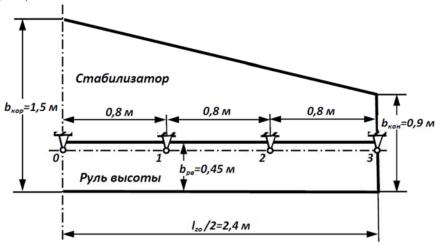
Тест №2 «Расчет крыла на статическую прочность и жесткость»


1. Выполнить проектировочный расчёт поперечного сечения подкосного крыла в месте установки подкоса. Профиль крыла Р-П-14, $b_{\text{сеч}}=1,6$ м, лонжероны установлены на 20 и 60% хорды. Расчётные значения внутренних силовых факторов в сечении крыла N=32 кH, Q=29 кH, $M_{\text{изг}}=28$ кH·м, $M_{\text{кр}}=8,5$ кН·м.

- 2.Спроектировать поперечное сечение свободнонесущего крыла самолёта. Исходная информация: хорда крыла в рассматриваемом сечении $b_{\text{сеч}}=1,8$ м; профиль крыла NACA 23012; крыло двухлонжеронное, лонжероны расположены на 15 и 65% хорды. В сечении действуют следующие расчётные силовые факторы: изгибающий момент $M_{\text{изг}}=80$ кН·м, крутящий момент $M_{\text{кр}}=12$ кН·м, поперечная сила Q_y =60 кН.
- 3.Спроектировать поперечное сечение свободнонесущего крыла самолёта. Исхоная информация: хорда крыла в рассматриваемом сечении $b_{\text{сеч}}=2,2\,$ м; профиль крыла NACA 0009; крыло двухлонжеронное, лонжероны расположены на 25 и 70% хорды. В сечении действуют следующие расчётные силовые факторы: изгибающий момент $M_{\text{изг}}=125\,$ к $\text{H}\cdot\text{m}$, крутящий момент $M_{\text{кр}}=17\,$ к $\text{H}\cdot\text{m}$, поперечная сила $Q_y=75\,$ к $\text{H}\cdot$

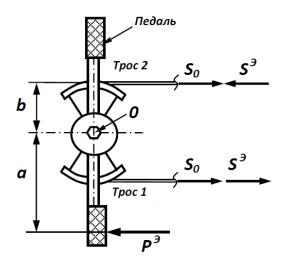

Тест №3 «Расчет оперения на статическую прочность и жесткость»

1. Под крылом самолёта (рис 1) подвешены 4 двигателя с максимальной тягой $P_{\rm дв.max}$ 50 кН каждый. Определить расчётную уравновешивающую нагрузку на вертикальное оперение в случае остановки двух двигателей с одной стороны, приняв коэффициент безопасности f=2. Распределить эту нагрузку по размаху и площади руля направления (рис. 2) и найти разрушающее усилие в тяге управления. Считать, что воздушная нагрузка распределяется между килем и рулём направления пропорционально их площадям. Распределение воздушной нагрузки по хорде вертикального оперения в рассматриваемом случае представлено на рис. 3.

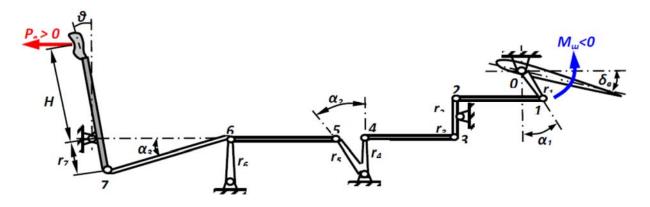


2. На рис. 1 представлена схема вертикального оперения. Крепление руля направления к килю производится в точках 1, 2, 3. Максимальная скорость полёта у земли $v_{max} = 950$ км/час. Для случая маневренной нагрузки определить разрушающую нагрузку на руль направления. Согласно нормам прочности, воздушная нагрузка на вертикальное

оперение определится по формуле $P_{\text{в.о.}}^9 = \pm 0,37 \cdot q_{\text{max}} \cdot S_{\text{в.о.}}$. Коэффициент безопасности f=2. Распределить нагрузку по размаху и площади руля, распределить нагрузку по нервюре и построить эпюры поперечных сил и изгибающих моментов по размаху руля. Принять изгибную жёсткость руля по размаху постоянной, а опоры руля считать абсолютно жёсткими. Распределение воздушной нагрузки по хорде вертикального оперения в рассматриваемом случае представлено на рис. 2.

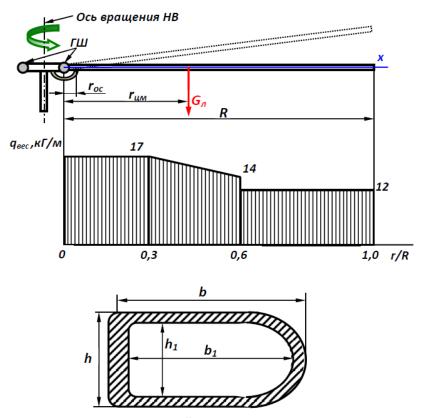


3. На горизонтальное оперение действует вторая маневренная нагрузка. Удельная нагрузка на крыло самолёта $p = G/S = 2 \text{ кH/m}^2$, $S=30 \text{ m}^2$, $n_{\text{max}}^9 = 6$, f=2. Схема оперения приведена на рисунке. Определить расчётную воздушную нагрузку на руль высоты и стабилизатор, распределить её по размаху агрегата и по хорде, найти реакции в кронштейнах крепления руля высоты, а также распределение нагрузки по нервюре руля высоты (шаг нервюр $t_{\text{H}} = 0.4 \text{ м}$).

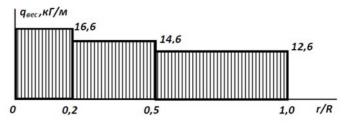


Тест №4 «Расчет систем управления и мотоустановок на статическую прочность и жесткость»

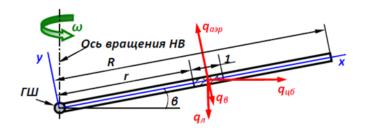
1. Найти усилие предварительной затяжки тросов S_0 системы ножного управления, если разрушающая нагрузка на педаль $P^P=2,4$ кH, коэффициент безопасности f=2, размеры a=240 мм, b=150 мм.


2. Найти нагрузку P_B на ручку управления рулём высоты, уравновешивающую расчётный шарнирный момент $M_u^P = 360 \text{ H} \cdot \text{м}$, и определить передаточное число $(d\delta_s/d\theta)$ в канале продольного управления (канале тангажа). Проверить на прочность, устойчивость и вибрации одну из тяг (например, тягу 5-6). Условно принять, что расчётная величина шарнирного момента соответствует нейтральному положению руля высоты. Исходная информация для расчёта: r_1 = 5 см, r_2 = 6 см, r_3 = 8 см, r_4 = 10 см, r_5 = 12 см, r_7 = 10 см, r_7 = 10 см, r_8 = 60 см, r_8 = 30°; r_8 = 8°. Условно принять, что расчётная величина r_8 соответствует нейтральному положению руля. Взлётный вес самолёта r_8 = 25 кН. Длина тяги 5-6 r_8 = 120 см. Тяга изготовлена из трубы r_8 = 35×1,5 мм, материал трубы — сплав Д16АТ, имеющий r_8 = 440 МПа и r_8 = 0,7·10⁵ МПа. На самолёте установлен поршневой двигатель, развивающий на крейсерском режиме r_8 = 1600 об/мин.

3. Какое минимальное количество правильно расположенных стержней необходимо для крепления двигателя к самолёту? Как определить расчетные значения инерционных сил, действующих на узлы крепления двигателя?


Тест №5 «Особенности прочностного расчета винтокрылов»

1. Проверить на прочность критическое сечение лопасти несущего винта в случае II-з — падение лопасти на нижний ограничитель свеса. Задано распределение веса по длине лопасти и форма поперечного сечения в комеле лопасти. Материал лопасти — титановый сплав ОТ-4, имеющий модуль упругости $E_{Ti} = 1,15\cdot 10^5$ МПа и предел прочности $\sigma_B = 700$ МПа. R = 9 м, f = 2, $f_{\text{доп}} = 1,25$, $r_{\text{ос}} = 0,02$ R, b = 200 мм, h = 100 мм: $b_1 = 150$ мм: $h_1 = 60$ мм. По результатам испытаний лопасти на сброс рекомендуют $n^9 = 4...4,5$; принять $n^9 = 4...4,5$;



Сечение лопасти в районе ограничителя свеса

2. Одновинтовой вертолёт с полётным весом G=120 кН имеет пятилопастной несущий винт (z=5). Полная крутка лопасти $\phi_3=-5^\circ$. Вес лопасти $G_\pi=1,40$ кН. Угловая скорость лопасти на расчётном режиме $\omega=25$ рад/с. Лопасть прямоугольной формы в плане, плечо силы тяги на лопасти $r_{\rm T}=0,8$ R. Радиус инерции лопасти $r_i=0,577$ R. Задано распределение веса лопасти по её длине.

Для случая III-л - выход из планирования на азимуте лопасти $\psi = 270^\circ$ определить все виды погонных нагрузок, действующих на лопасть, и построить эпюры сил и моментов. Принять $n^3 = 3$, f = 1.5, $\mu = v/(\omega R) = 0.25$.

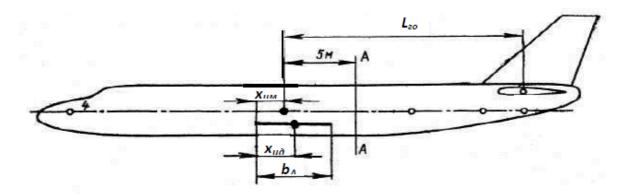
3. Определить напряжения среза в болте стыковой гребенки лопасти несущего винта (HB) в случае I-з при раскрутке пятилопастного HB вертолёта (z=5), если мощность, передаваемая на HB N= 5800 л.с.; обороты HB n=110 об/мин; два соединительных болта

диаметром d = 30 мм, расстояние между осями крайних проушин m = 150 мм, количество плоскостей среза болта у каждой проушины две.

Расчётный изгибающий момент в сочленении лопасти при раскрутке HB от двигателя определяется по формуле

$$M_{usc}^{P} = 1,5 \frac{716, 2 \cdot N}{z \cdot 0,9n} \cdot f \cdot f_{\text{non}}.$$

Коэффициент безопасности f = 2; дополнительный коэффициент безопасности при расчете соединительных узлов принять $f_{\text{доп}} = 1,25$. Работой среднего ушка пренебречь.


Тест №6 «Расчет фюзеляжа на статическую прочность и жесткость»

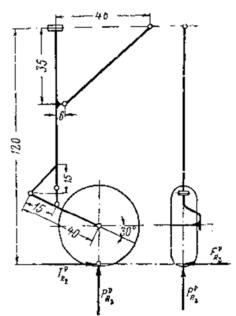
- 1. В расчетном сечении фюзеляжа в случае остановки двигателей с одной стороны от плоскости симметрии самолета действуют усилия $Q^P = 200$ кH, $M_{use}^P = 3500$ кH·м, $M_{\kappa p}^P = 720$ кH·м. Расчетное сечение находится на цилиндрической части фюзеляжа диаметром D = 3,5 м, обшивка и стрингеры выполнены из алюминиевого сплава Д16АТ, имеющего модуль упругости $E_{Al} = 0.7 \cdot 10^5$ МПа и предел прочности при растяжении $\sigma_B = 440$ МПа, стрингеры изготовлены из равнополочных уголков $30 \times 30 \times 3$ мм, $F_{\rm crp} = 1.72$ см², шаг стрингеров $t_{\rm crp} = 15.1$ см, шпация $t_{\rm шп} = 40$ см, толщина обшивки $\delta_{\rm o6} = 1.5$ мм, предел прочности при сдвиге $\sigma_B = 132$ МПа. Проверить работу элементов сечения на прочность и устойчивость.
- 2. Проверить прочность и устойчивость элементов сечения фюзеляжа в случае его изгиба в вертикальной плоскости, если $Q^P = 650$ кH, $M_{use}^P = 4400$ кH·м. Расчетное сечение находится на цилиндрической части фюзеляжа диаметром D = 3.8 м. обшивка и стрингеры выполнены из алюминиевого сплава B95AT, имеющего модуль упругости $E_{Al} = 0.7 \cdot 10^5$ МПа и предел прочности при растяжении $\sigma_B = 540$ МПа. стрингеры изготовлены из равнополочных уголков 28x28x2.5 мм, $F_{\rm crp} = 1.34$ см², шаг стрингеров $t_{\rm crp} = 16.6$ см, шпация $t_{\rm шп} = 40$ см, толщина обшивки верхнего свода и боковин $\delta_{\rm o6.B} = \delta_{\rm o6.6} = 1.5$ мм, толщина обшивки нижнего свода $\delta_{\rm o6.H} = 2.0$ мм, предел прочности обшивки при сдвиге $\sigma_B = 162$ МПа.
- 3. Среднемагистральный самолет имеет следующие данные: полетный вес самолета $G=850\,\mathrm{kH}$, площадь крыла $S=190\,\mathrm{m}^2$, площадь горизонтального оперения $S_{\mathrm{ro}}=43\,\mathrm{m}^2$, плечо горизонтального оперения $L_{\mathrm{ro}}=19\,\mathrm{m}$, длина самолета $L=42\,\mathrm{m}$, средняя аэродинамическая хорда $b_A=5\,\mathrm{m}$, максимальная эксплуатационная перегрузка $n_{\mathrm{max}}^3=2.8$, полетная центровка самолета $x_{\mathrm{цм}}=0.28\cdot b_A$, положение центра давления крыла в случае B $x_{\mathrm{цд}}=0.35\cdot b_A$. Для этого случая определить расчетные (разрушающие) нагрузки на узлы крепления агрегата весом $G_4=5\,\mathrm{kH}$, установленного в носовой части фюзеляжа (точке 4) на расстоянии $15\,\mathrm{m}$ от ц.м. самолета, если на горизонтальное оперение одновременно действуют уравновешивающая и первая маневренная нагрузка, направленная вниз.

<u>Указания</u>. Первая маневренная нагрузка на горизонтальное оперение определяется по формуле

$$Y_{\scriptscriptstyle{ ext{MaH-1-ro}}}^P = \pm k \cdot n_{\scriptscriptstyle{ ext{max}}}^{\scriptscriptstyle{ ext{3}}} rac{G}{S} S_{\scriptscriptstyle{ ext{ro}}} \, .$$

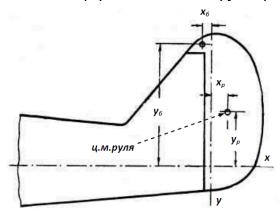
В случае В коэффициент k принимается равным не менее 0,25. Осевой момент инерции самолета $J_z = G/g \cdot i_z^2$, где радиус инерции самолета можно рассчитать по приближенной формуле $i_z \approx 0,16 \cdot L$.

Тест №7 «Расчет шасси на прочность, жесткость и энергоемкость»


1. Подобрать для главных и носовых опор шасси магистрального пассажирского самолета малой дальности колеса по каталогу и определить их основные характеристики, если взлетная масса $G_0 = 400$ кH, посадочная масса $G_{\text{пос}} = 350$ кH, взлетная скорость $v_{\text{взл}} = 250$ км/час, посадочная скорость $v_{\text{пос}} = 225$ км/час; b/(a+b) = 0.07; h/(a+b) = 0.23. На каждой из главных опор - четыре, а на носовой - два колеса.

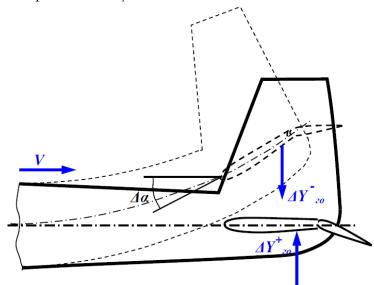
<u>Указание</u>. Для магистральных самолетов используются пневматики высокого давления (для основных опор - тормозные колеса, для носовой опоры - нетормозные колеса).

2. Подобрать колеса и определить их основные характеристики для главных и носовых опор шасси пассажирского самолета местных воздушных линий, базирующегося на грунтовых аэродромах, если взлетная масса $G_0 = 60$ кH, посадочная масса $G_{\text{пос}} = 60$ кH, взлетная скорость $v_{\text{взл}} = 160$ км/час; посадочная скорость $v_{\text{пос}} = 160$ км/час; b/(a+b) = 0,10; b/(a+b) = 0,30. На каждой опоре по одному колесу.


<u>Указание</u>. Для самолетов местных воздушных линий подбираются колеса с полубаллонными или арочными пневматиками низкого давления (для основных опор - тормозные колеса, для носовой опоры - нетормозные колеса).

3. Определить разрушающие нагрузки на основную опору шасси с носовым колесом в случае $R_{2\text{ш}}$ и построить эпюры изгибающих и крутящих моментов для стойки шасси. Вес самолёта G=50 кН. <u>Указание</u>. В случае $R_{2\text{ш}}$ на колесо действуют: вертикальная сила 0.7G, сила трения 0.385G и боковая сила 0.6G, коэффициент безопасности f = 1.65.

Тест №8 «Аэроупругость»


1. Определить массу сосредоточенного балансира руля направления и проверить достаточность удаления его от продольной оси фюзеляжа. Масса руля $m_p = 20$ кг, центробежный момент инерции руля относительно осей x и y $J_{xy} = 0.5$ кг м². Координаты центра масс руля $x_p = 0.15$ м, $y_p = 0.7$ м. Расстояние балансира относительно тех же осей $x_0 = 0.15$ м и $y_0 = 1.3$ м. Собственными деформациями киля и руля пренебречь.

2. При заходе самолёта на посадку с углом атаки крыла $\alpha=15^{\circ}$ на скорости V = 144 км/ч начался бафтинг нестреловидного горизонтального оперения. Определить, возникнут ли при этом резонансные колебания оперения. Каждую половину г.о. рассматривать как консольную балку постоянной изгибной жёсткости EJ=80 кН м² и длиной $l_{2o}/2=1,5$ м, закрепленную в фюзеляже. Считать, что линия ц.м. совпадает с линией ц.и. ($r_0=0$). Вес половины оперения $G_{2o}=0,8$ кН, средняя хорда корневого сечения крыла, расположенного перед оперением, b=3 м.

3. Определить индикаторную скорость реверса г.о. V_{rev} , если $c_{yeo}^{\alpha} = 3,0$; площадь г.о. $S_{eo} = 15 \text{ m}^2$, расстояние от ц.м самолёта до ц.д. г.о. $L_{eo} = 12 \text{ m}$; средняя изгибная жёсткость хвостовой части фюзеляжа $EI_{\phi} = 3 \cdot 10^4 \text{ kH} \cdot \text{m}^2$.

Контрольная работа (типовой вариант) «Проектировочный расчет поперечных сечений силовых элементов нестреловидного крыла»

Исходные данные для расчета крыла:

Корневая хорда, м	b_0	2		
Концевая хорда, м	$b_{\scriptscriptstyle m K}$	1,5		
Размах, м	l	10		
Взлетный вес, кН	G	100		
Вес двигателя, кН	$G_{\!\scriptscriptstyle ext{ДB}}$	20		
Расположение двигателя,				
расстояние от корневой	$l_{ m ДB}$	2		
хорды, м				
Тяга двигателя, кН	P	67		
Ширина фюзеляжа, м	l_{Φ}	2		
Профиль крыла	NACA 23012			
Относительная координата				
сечения ОЧК (относительно	$ar{z}$	0.5		
продольной оси симметрии		0,5		
самолета)				

Задание

- 1. Согласно исходным данным (по вариантам), построить эпюры внутренних силовых факторов в нестреловидном крыле. Не учитывать топливные баки в отъемной части крыла. Поперечную силу и изгибающий момент построить для расчетного случая А, крутящий момент для расчетного случая С. Руководствоваться нормами прочности из «Авиационные правила. Часть 25. Нормы летной годности самолетов транспортной категории».
- 2. Выбрать лонжеронную схему крыла с двумя лонжеронами. Выполнить проектировочный расчет для заданного поперечного сечения крыла. Определить из условия прочности толщину общивки, поперечные сечения поясов и стенок лонжеронов и стрингеров (использовать для них стандартные значения из сортамента). Считать, что центр тяжести нагрузки от двигателя в поперечном сечении, где он расположен, совпадает с расположением переднего лонжерона.

Необходимый графический материал (3 чертежа):

- 1. Вид половины крыла в плане с отмеченным разбиением на сечения, с указанием расположения двигателя и расчетного сечения; результирующая погонных аэродинамических и массовых нагрузок крыла; эпюра перерезывающих сил; эпюра изгибающих моментов.
- 2. Вид половины крыла в плане с отмеченным разбиением на сечения, с указанием расположения двигателя и расчетного сечения; эпюра изгибающих моментов.
- 3. Профиль расчетного сечения с указанием элементов силового набора, выполненный в масштабе.

Контрольная работа подлежит защите. На защите студент должен продемонстрировать умение выбирать метод решения задачи, обосновать применение расчетных формул, продемонстрировать навык проведения вычислений. Оформление производится в соответствии с РД ФГБОУ ВО «КнАГУ» 013-2016 «Текстовые студенческие работы. Правила оформления».

Курсовая работа (типовой вариант) «Проектировочный и поверочный расчет поперечных сечений силовых элементов стреловидного крыла»

Исходные данные для расчета крыла:

Корневая хорда, м	b_0	2	
Концевая хорда, м	$b_{\scriptscriptstyle m K}$	1,5	
Размах, м	l	10	
Взлетный вес, кН	G	100	
Вес двигателя, кН	$G_{\scriptscriptstyle extsf{дB}}$	20	
Расположение двигателя,			
расстояние от корневой	$l_{ m {\scriptscriptstyle JB}}$	2	
хорды, м			
Тяга двигателя, кН	P	67	
Ширина фюзеляжа, м	l_{Φ}	2	
Угол стреловидности	χ0,25	15°	
Профиль крыла	NACA 23012		
Относительная координата			
сечения ОЧК (относительно	$ar{z}$	0,5	
продольной оси симметрии	Z	0,3	
самолета)			

Задание

- 1. Согласно исходным данным (по вариантам), построить эпюры внутренних силовых факторов в стреловидном крыле. Учитывать топливные баки в отъемной части крыла. Поперечную силу и изгибающий момент построить для расчетного случая А, крутящий момент для расчетного случая С. Руководствоваться нормами прочности из «Авиационные правила. Часть 25. Нормы летной годности самолетов транспортной категории».
- 2. Выбрать лонжеронную схему крыла с двумя лонжеронами. Выполнить проектировочный расчет для заданного поперечного сечения крыла. Определить из условия прочности толщину общивки, поперечные сечения поясов и стенок лонжеронов и стрингеров (использовать для них стандартные значения из сортамента). Считать, что центр тяжести нагрузки от двигателя в поперечном сечении, где он расположен, совпадает с расположением переднего лонжерона.
- 3. В пакете инженерного анализа ANSYS построить геометрическую модель крыла, задавая поперечные сечения силовых элементов согласно выполненному аналитическому расчету. Задать действующие нагрузки и убедиться в соблюдении прочности.

Необходимый графический материал:

- 1. Вид половины крыла в плане с отмеченным разбиением на сечения, с указанием расположения двигателя и расчетного сечения; результирующая погонных аэродинамических и массовых нагрузок крыла; эпюра перерезывающих сил; эпюра изгибающих моментов.
- 2. Вид половины крыла в плане с отмеченным разбиением на сечения, с указанием расположения двигателя и расчетного сечения; эпюра изгибающих моментов.
- 3. Профиль расчетного сечения с указанием элементов силового набора, выполненный в масштабе.
- 4. Геометрическая модель ОЧК, конечно-элементная дискретизация расчетной области, графическое представление параметров напряженно-деформированного состояния.

Курсовая работа подлежит защите. На защите студент должен продемонстрировать умение выбирать метод решения задачи, обосновать применение расчетных формул, продемонстрировать навык проведения аналитических вычислений и компьютерного моделирования. Оформление производится в соответствии с РД ФГБОУ ВО «КнАГУ» 013-2016 «Текстовые студенческие работы. Правила оформления».

Лист регистрации изменений к РПД

№ п/п	Основание внесения изменения	Количество страниц изменения	Подпись разработчика РПД