Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования «Комсомольский-на-Амуре государственный университет»

УТВЕРЖДАЮ

Декан факультета

Факультет авиационной и морской техники

Красильникова О.А.

((20))

2021 г

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

«Применение пакетов прикладных программ в механике конструкций»

Специальность	24.05.07 Самолето- и вертолетостроение
Специализация	Самолетостроение
Квалификация выпускника	Инженер
Год начала подготовки (по учебному плану)	2021
Форма обучения	Очная форма
Технология обучения	Традиционная

Курс	Семестр	Трудоемкость, з.е.
5	9	2

Вид промежуточной аттестации	Обеспечивающее подразделение
Зачёт	Кафедра «Авиастроение»

Разработчик рабочей программы:

Доцент, Кандидат физико-математических наук

Рация Д.А

СОГЛАСОВАНО:

Заведующий кафедрой Кафедра «Авиастроение» Марьин С.Б.

1 Введение

Рабочая программа и фонд оценочных средств дисциплины «Применение пакетов прикладных программ в механике конструкций» составлены в соответствии с требованиями федерального государственного образовательного стандарта, утвержденного приказом Минобрнауки Российской Федерации ФГОС ВО, утвержденный приказом Минобрнауки России от 04.08.2020 №877, и основной профессиональной образовательной программы подготовки «Самолетостроение» по специальности «24.05.07 Самолето- и вертолетостроение».

Практическая подготовка реализуется на основе:

Профессиональный стандарт 32.004 «СПЕЦИАЛИСТ ПО ПРОЧНОСТНЫМ РАС-ЧЕТАМ АВИАЦИОННЫХ КОНСТРУКЦИЙ».

Обобщенная трудовая функция: D Руководство проектно-расчетными работами по прочности авиационных конструкций.

- НУ-3 Выполнять расчеты на прочность методом конечного элемента по готовым расчетным моделям с применением специализированных программных комплексов.
- НУ-4 Проводить расчеты на прочность конструкций с учетом геометрической нелинейности элементов, температурного воздействия, пластичности материалов коррозионного поражения.
- НУ-7 Анализировать результаты расчета, полученные методом конечного элемента.
- НУ-10 пользоваться стандартным программным обеспечением при оформлении документации и инженерных расчетов.
 - НУ-11 пользоваться программным обеспечением для расчетов на прочность. Воспитательная работа реализуется в рамках занятий семинарского типа.

Задачи 1. Обучение современным вычислительным методам расчета конструкдисциплины ций летательных аппаратов на прочность, жесткость и устойчивость методом конечных элементов по готовым расчетным моделям с применением специализированных программных комплексов. 2. Закрепление навыков применения инженерных расчётов для анализа ситуаций, с которыми инженеру приходится сталкиваться при проектировании и конструировании авиационной техники. 3. Формирование умений и навыков использования метода конечных элементов для анализа напряженно-деформированного состояния конструкций с учетом геометрической нелинейности элементов, температурного воздействия, пластичности материалов при решении задач статической прочности, устойчивости и динамики с применением для двумерного и трёхмерного моделирования. Основные раз-1. Прочность и жесткость брусьев и пластин делы / темы 2. Собственные колебания пластин и оболочек дисциплины 3. Устойчивость оболочек и стержневых конструкций 4. Вынужденные колебания массивных тел и стержневых конструкций

2 Перечень планируемых результатов обучения по дисциплине (модулю), соотнесенных с планируемыми результатами образовательной программы

Процесс изучения дисциплины «Применение пакетов прикладных программ в механике конструкций» направлен на формирование следующих компетенций в соответствии с ФГОС ВО и основной образовательной программой (таблица 1):

Таблица 1 – Компетенции и индикаторы их достижения

Код и наименование	Индикаторы их достижения Индикаторы достижения	Планируемые результаты обу-
компетенции		чения по дисциплине
	Профессиональные	
ПК-3 Способен про-	ПК-3.1 Знает методы расчетов	Знать: методы расчетов на
водить прочностные	на прочность и устойчивость	прочность и устойчивость раз-
расчеты авиацион-	различных типов конструкций	личных типов конструкций при
ных конструкций	при статических и динамиче-	статических и динамических
при проектировании	ских нагрузках	нагрузках
и конструировании	ПК-3.2 Умеет пользоваться	Уметь: пользоваться про-
авиационной техни-	программным обеспечением	граммным обеспечением для
КИ	для моделирования напряжен-	моделирования напряженного
	ного состояния при статиче-	состояния при статических и
	ских и динамических нагруз-	динамических нагрузках; ис-
	ках; использовать норматив-	пользовать нормативно-
	но-техническую документа-	техническую документацию
	цию (нормы прочности, авиа-	Владеть: навыками анализа
	ционные правила, руководство	результатов расчетных и экспе-
для конструкторов по прочно-		риментальных исследований в
сти)		рамках проектно-
	ПК-3.3 Владеет навыками	конструкторской и производ-
	анализа результатов расчет-	ственно-технологической дея-
	ных и экспериментальных ис-	тельности; навыками интерпре-
	следований в рамках проект-	тации полученных результатов
	но-конструкторской и произ-	с целью их использования в
	водственно-технологической	профессиональной деятельно-
	деятельности	сти

3 Место дисциплины (модуля) в структуре образовательной программы

Дисциплина «Применение пакетов прикладных программ в механике конструкций» изучается на 5 курсе, 9 семестре.

Дисциплина входит в состав блока 1 «Дисциплины (модули)» и относится к части, формируемой участниками образовательных отношений.

Для освоения дисциплины необходимы знания, умения, навыки и / или опыт практической деятельности, сформированные в процессе изучения дисциплин / практик: «Аэродинамика самолетов», «Динамика полета самолетов», «Механика разрушения», «Проектирование конструкций из композиционных материалов», «Метрология, стандартизация и сертификация», «Строительная механика самолетов», «Теория упругости, пластичности и ползучести», «Прочность авиационных конструкций», «Производственная практика (конструкторская практика)».

Знания, умения и навыки, сформированные при изучении дисциплины «Применение пакетов прикладных программ в механике конструкций», будут востребованы при изучении последующих дисциплин: «Управление качеством», «Производственная практика (технологическая (проектно-технологическая) практика), 11 семестр», «Производственная практика (преддипломная практика)».

Дисциплина «Применение пакетов прикладных программ в механике конструкций» частично реализуется в форме практической подготовки.

Дисциплина «Применение пакетов прикладных программ в механике конструкций» в рамках воспитательной работы направлена на формирование у обучающихся уме-

ния аргументировать, самостоятельно мыслить, развивает творчество, профессиональные умения или творчески развитой личности, системы осознанных знаний, ответственности за выполнение учебно-производственных заданий и т.д.

4 Объем дисциплины (модуля) в зачетных единицах с указанием количества академических часов, выделенных на контактную работу обучающихся с преподавателем (по видам учебных занятий) и на самостоятельную работу обучающихся

Общая трудоемкость (объем) дисциплины составляет 2 з.е., 72 акад. час. Распределение объема дисциплины (модуля) по видам учебных занятий представлено в таблице 2.

Таблица 2 – Объем дисциплины (модуля) по видам учебных занятий

тиозищи 2 объем диециплины (модули) по видим у теоных запити	
Объем дисциплины	Всего академических часов
Общая трудоемкость дисциплины	72
Контактная аудиторная работа обучающихся с преподавате- лем (по видам учебных занятий), всего	16
В том числе:	
занятия лекционного типа (лекции и иные учебные занятия, предусматривающие преимущественную передачу учебной информации педагогическими работниками), в том числе в форме практической подготовки:	0
занятия семинарского типа (семинары, практические занятия, практикумы, лабораторные работы, коллоквиумы и иные аналогичные занятия), в том числе в форме практической подготовки:	16 (в том числе 16 в форме практической подготовки)
Самостоятельная работа обучающихся и контактная работа, включающая групповые консультации, индивидуальную работу обучающихся с преподавателями (в том числе индивидуальные консультации); взаимодействие в электронной информационнообразовательной среде вуза	56
Промежуточная аттестация обучающихся – Зачёт	0

5 Содержание дисциплины (модуля), структурированное по темам (разделам) с указанием отведенного на них количества академических часов и видов учебной работы

Таблица 3 – Структура и содержание дисциплины (модуля)

Наименование разделов, тем и содержание материала	Виды учебной работы, включая самостоятельную работу обучающихся и трудоемкость (в часах)			
	Контактная работа преподавателя с обуча- ющимися			CPC
	Лекции	Семинарские (практические занятия)	Лабораторные занятия	
1. Прочность и 2	жесткость бру	усьев и пластин		
Лабораторная работа №1 «Расчет осесимметричного диска на статическую прочность и жесткость»	-	-	2*	7
Лабораторная работа №2 «Расчет консольной балки на статическую прочность и жесткость»	-	-	2*	7
2. Собственные к	2. Собственные колебания пластин и оболочек			
Лабораторная работа №3 «Расчет собственных частот и собственных колебаний шарнирно опертой пластины»	-	-	2*	7
Лабораторная работа №4 «Расчет собственных частот и собственных колебаний предварительно напряженной шарнирно опертой подкрепленной пластины»	-	-	2*	7
3. Устойчивость обол	почек и стерж	кневых констру	кций	
Лабораторная работа №5 «Расчет на устойчивость цилиндрической оболочки при продольном сжатии»	-	-	2*	7
Лабораторная работа №6 «Расчет на устойчивость пространственной рамы»	-	-	2*	7
4. Вынужденные колебания м	пассивных те.	л и стержневых	конструкций	
Лабораторная работа №7 «Расчёт колонны с сосредоточенными и распределённой массами»	-	-	2*	7

Лабораторная работа №8 «Расчет прочности кронштейна при циклических нагрузках»	-	_	2*	7
ИТОГО по дисциплине	-	-	16	56

^{*} реализуется в форме практической подготовки

6 Внеаудиторная самостоятельная работа обучающихся по дисциплине (модулю)

При планировании самостоятельной работы студенту рекомендуется руководствоваться следующим распределением часов на самостоятельную работу (таблица 4):

Таблица 4 – Рекомендуемое распределение часов на самостоятельную работу

Компоненты самостоятельной работы	Количество часов
Выполнение отчетов и подготовка к защите лабораторных работ	16
Выполнение заданий расчетно-графической работы	40
ИТОГО	56

7 Оценочные средства для проведения текущего контроля и промежуточной аттестации обучающихся по дисциплине (модулю)

Фонд оценочных средств для проведения текущего контроля успеваемости и промежуточной аттестации представлен в Приложении 1.

Полный комплект контрольных заданий или иных материалов, необходимых для оценивания результатов обучения по дисциплине (модулю), практике хранится на кафедре-разработчике в бумажном и электронном виде.

8 Учебно-методическое и информационное обеспечение дисциплины (модуля)

8.1 Основная литература

- 1. Оконечников, А. С. Прочностные и динамические расчеты в программном комплексе ANSYS Workbench: Учебное пособие / А. С. Оконечников, Д. О. Сердюк, Γ . В. Федотенков Москва: Изд-во МАИ, 2021.-104 с.: ил.
- 2. Инженерный анализ в ANSYS Workbench: Учеб, пособие/ В. А. Бруяка, В. Г. Фокин, Я. В. Кураева. Самара: Самар, гос. техн. ун-т, 2013. 149 с.
- 3. Иванов, Д. В. Введение в ANSYS Workbench: Учеб.-метод, пособие для студентов естественно-научных дисциплин / Д. В. Иванов, А. В. Доль Саратов: Амирит, 2016.-56 с.
- 4. Основы работы в ANSYS 17 / Н. Н. Федорова, С.А. Вальгер, М. Н. Данилов, Ю.В. Захарова. Москва: ДМК Пресс, 2017. 210 с.
- 5. Программное обеспечение инженерного моделирования физических процессов: Лабораторный практикум. В 2 ч. Ч. 1: Тепловые режимы работы и защиты конструкций РЭС от механических воздействий: пособие / В. Ф. Алексеев, И. Н. Богатко, Г. А. Пискун Минск: БГУИР, 2017. 124 с.
- 6. Барулина, М. А. Использование ANSYS Workbench для работы с геометрическими моделями. Москва: Эдитус, 2012. 316 с.

8.2 Дополнительная литература

- 1. Биргер, И. А. Расчеты на прочность деталей машин: Справочник / И. А. Биргер, Б. Ф. Шорр, Г. Б. Иосилевич. 3-е изд., перераб. и. доп. Москва: Машиностроение, 1979. 702 с.
- 2. Расчеты на прочность в машиностроении. Том 2 / С. Д. Пономарев, В. Л. Бидерман и др.; под ред. д-ра тех. наук. проф. С. Д. Пономарева. Москва: Машгиз, 1956.
- 3. Справочник машиностроителя в шести томах. Том 3 /Н.С. Ачеркан, М.П. Вукалович, В. Н. Кудрявцев, С. Д. Пономарев и др.; под ред. академика АН УССР С. В. Серенсена. Москва: Машгиз, 1963.
- 4. Марочник сталей и сплавов / В.Г. Сорокин, А.В. Волосникова, С.А. Вяткин и др.; Под обш. ред. В.Г. Сорокина. Москва: Машиностроение, 1989. 640 с.
- 5. Авиационный справочник. Расчетные значения характеристик авиационных металлических конструкционных материалов. ЦАГИ. Вып. 4. Москва, 2012. 302 с.

8.3 Методические указания для студентов по освоению дисциплины

1. Олейников, А. И. Анализ напряженно-деформированного состояния в системе MSC.Nastran&MSC.Patran / А. И. Олейников, К. С. Бормотин. Комсомольск-на-Амуре: Изд-во Комсомольского-на-Амуре гос. техн.ун-та, 2009. - 135 с.

8.4 Современные профессиональные базы данных и информационные справочные системы, используемые при осуществлении образовательного процесса по лиспиплине

- 1 Электронно-библиотечная система ZNANIUM.COM Договор № 4997 эбс ИКЗ 21 1 2727000769 270301001 0010 004 6311 244 от 13 апреля 2021 г. (с 17 апреля 2021 г. по 16 апреля 2022 г.).
- 2 Электронно-библиотечная система IPRbooks Лицензионный договор № ЕП 44/4 на предоставление доступа к электронно-библиотечной системе IPRbooks ИКЗ 21 1 2727000769 270301001 0010 003 6311 244 от 05 февраля 2021 г. (с 27 марта 2021 г. по 27 марта 2022 г.).
- 3 Образовательная платформа "Юрайт". Договор № ЕП44/2 на оказание услуг по предоставлению доступа к образовательной платформе ИКЗ 21 1 2727000769 270301001 0010001 6311 244 от 02 февраля 2021 г. (с 07 февраля 2021 г. по 07 февраля 2022 г.).
- 4 Научная электронная библиотека eLIBRARY.RU. Договор № ЕП 44/3 на оказание услуг доступа к электронным изданиям ИКЗ 211 272 7000769 270 301 001 0010 002 6311 244 от 04 февраля 2021 г. (с 04 февраля 2021 г. по 04 февраля 2030 г.).
- 5 Справочная правовая система Консультант Плюс. Договор № 45 от 17 мая 2017 (бессрочный).
- 6 Президентская библиотека им. Б.Н. Ельцина https://www.prlib.ru/ Безвозмездное пользование (открытый доступ).
- 7 Национальная электронная библиотека (НЭБ) https://rusneb.ru/ Безвозмездное пользование (открытый доступ).
- 8 Научная электронная библиотека "КиберЛенинка" https://cyberleninka.ru/ Безвозмездное пользование (открытый доступ).

8.5 Перечень ресурсов информационно-телекоммуникационной сети "Интернет», необходимых для освоения дисциплины (модуля)

- 1 Национальная платформа открытого образования. https://openedu.ru/
- 2 Сборник руководств программы ANSYS

http://old.bsau.ru/netcat_files/File/CIT/manuals/ANSYS.pdf

- 3 CAE Expert интегратор технологий ANSYS в России и СНГ https://cae-expert.ru
- 4. ГК «ПЛМ Урал» интегратор передовых CAD/CAE/CAM/CAI/QMS/PDM-систем https://www.plm-ural.ru

8.6 Лицензионное программное обеспечение, используемое при осуществлении образовательного процесса по дисциплине

Таблица 5 – Перечень используемого программного обеспечения

Наименование ПО	Реквизиты / условия использования
OpenOffice	Свободная лицензия, условия использования по ссылке:
	https://www.openoffice.org/license.html
ANSYS Academic Research	Условия использования: Academic Program(s)
Mechanical and CFD	Лицензия № 1071235

9 Организационно-педагогические условия

Организация образовательного процесса регламентируется учебным планом и расписанием учебных занятий. Язык обучения (преподавания) - русский. Для всех видов аудиторных занятий академический час устанавливается продолжительностью 45 минут.

При формировании своей индивидуальной образовательной траектории обучающийся имеет право на перезачет соответствующих дисциплин и профессиональных модулей, освоенных в процессе предшествующего обучения, который освобождает обучающегося от необходимости их повторного освоения.

9.1 Образовательные технологии

Учебный процесс при преподавании курса основывается на использовании традиционных, инновационных и информационных образовательных технологий. Традиционные образовательные технологии представлены и семинарскими (лабораторными) занятиями. Инновационные образовательные технологии используются в виде широкого применения активных и интерактивных форм проведения занятий. Информационные образовательные технологии реализуются путем активизации самостоятельной работы студентов в информационной образовательной среде.

9.2 Занятия лекционного типа

Отсутствуют.

9.3 Занятия семинарского типа

Семинарские занятия представляют собой детализацию теоретического материала, проводятся в целях закрепления курса и охватывают все основные разделы.

Основной формой проведения семинаров является решение заданий лабораторных работ в специализированных пакетах инженерного анализа, а также разбор примеров в

аудиторных условиях. В обязанности преподавателя входят: оказание методической помощи и консультирование студентов по соответствующим темам курса.

Активность на семинарских занятиях оценивается по следующим критериям:

- ответы на вопросы, предлагаемые преподавателем;
- участие в дискуссиях;
- выполнение проектных и иных заданий;
- ассистирование преподавателю в проведении занятий.

Ответ должен быть аргументированным, развернутым, не односложным, содержать ссылки на источники.

Оценивание заданий, выполненных на семинарском занятии, входит в накопленную оценку.

При выполнении лабораторной работы студент должен предоставить отчет, в котором отражена последовательность решения задачи и приведены скриншоты из программы, поясняющие ход решения. Студент должен продемонстрировать умения и навыки использования пакета прикладных программ: уметь строить геометрическую модель, задавать механические свойства материалов в соответствии с выбранной моделью, задавать нагрузки и граничные условия. Также студент должен продемонстрировать навык использования пакета прикладных программ, а именно в правильном порядке выполнять последовательность необходимых действий, приводящих к решению задачи. В случае, если студент не может объяснить ход решения задачи, лабораторная работа считается невыполненной.

9.4 Самостоятельная работа обучающихся по дисциплине (модулю)

Самостоятельная работа студентов — это процесс активного, целенаправленного приобретения студентом новых знаний, умений без непосредственного участия преподавателя, характеризующийся предметной направленностью, эффективным контролем и оценкой результатов деятельности обучающегося.

Цели самостоятельной работы:

- систематизация и закрепление полученных теоретических знаний и практических умений студентов;
 - углубление и расширение теоретических знаний;
- формирование умений использовать нормативную и справочную документацию, специальную литературу;
- развитие познавательных способностей, активности студентов, ответственности и организованности;
- формирование самостоятельности мышления, творческой инициативы, способностей к саморазвитию, самосовершенствованию и самореализации;
 - развитие исследовательских умений и академических навыков.

Самостоятельная работа может осуществляться индивидуально или группами студентов в зависимости от цели, объема, уровня сложности, конкретной тематики.

Технология организации самостоятельной работы студентов включает использование информационных и материально-технических ресурсов университета.

Контроль результатов внеаудиторной самостоятельной работы студентов может проходить в письменной, устной или смешанной форме.

Студенты должны подходить к самостоятельной работе как к наиважнейшему средству закрепления и развития теоретических знаний, выработке единства взглядов на отдельные вопросы курса, приобретения определенных навыков и использования профессиональной литературы.

9.5 Методические указания для обучающихся по освоению дисциплины

При изучении дисциплины обучающимся целесообразно выполнять следующие рекомендации:

- 1. Изучение учебной дисциплины должно вестись систематически.
- 2. После изучения какого-либо раздела по учебнику или конспектным материалам рекомендуется по памяти воспроизвести основные термины, определения, понятия раздела.
- 3. Особое внимание следует уделить выполнению отчетов по практическим занятиям и индивидуальным комплексным заданиям на самостоятельную работу.
- 4. Вся тематика вопросов, изучаемых самостоятельно, задается на аудиторных занятиях преподавателем. Им же даются источники (в первую очередь вновь изданные в периодической научной литературе) для более детального понимания вопросов, озвученных на аудиторных занятиях.

При самостоятельной проработке курса обучающиеся должны:

- просматривать основные определения и факты;
- повторить законспектированный на аудиторном занятии материал и дополнить его с учетом рекомендованной по данной теме литературы;
- изучить рекомендованную литературу, составлять тезисы, аннотации и конспекты наиболее важных моментов;
 - самостоятельно выполнять задания, аналогичные предлагаемым на занятиях;
 - использовать для самопроверки материалы фонда оценочных средств.

10 Описание материально-технического обеспечения, необходимого для осуществления образовательного процесса по дисциплине (модулю)

10.1 Учебно-лабораторное оборудование

Таблица 6 – Перечень учебного и лабораторного оборудования

Аудитория	Наименование аудитории (лаборатории)	Используемое оборудование
Ауд. 225 /3	Компьютерный класс кафедры АС	Мультимедийное оборудование, ПЭВМ

10.2 Технические и электронные средства обучения

Для лабораторных занятий используется аудитория ауд. 225 /3 (компьютерный класс), укомплектованная специализированной мебелью и техническими средствами обучения (проектор, экран, персональные компьютеры).

Самостоятельная работа.

Помещения для самостоятельной работы оснащены компьютерной техникой с возможностью подключения к сети «Интернет» и доступом к электронной информационнообразовательной среде КнАГУ:

- читальный зал НТБ КнАГУ;
- компьютерные классы (ауд. 225/3).

11 Иные сведения

Методические рекомендации по обучению лиц с ограниченными возможностями здоровья и инвалидов

Освоение дисциплины обучающимися с ограниченными возможностями здоровья может быть организовано как совместно с другими обучающимися, так и в отдельных группах. Предполагаются специальные условия для получения образования обучающимися с ограниченными возможностями здоровья.

Профессорско-педагогический состав знакомится с психолого-физиологическими особенностями обучающихся инвалидов и лиц с ограниченными возможностями здоровья, индивидуальными программами реабилитации инвалидов (при наличии). При необходимости осуществляется дополнительная поддержка преподавания тьюторами, психологами, социальными работниками, прошедшими подготовку ассистентами.

В соответствии с методическими рекомендациями Минобрнауки РФ (утв. 8 апреля 2014 г. N АК-44/05вн) в курсе предполагается использовать социально-активные и рефлексивные методы обучения, технологии социокультурной реабилитации с целью оказания помощи в установлении полноценных межличностных отношений с другими студентами, создании комфортного психологического климата в студенческой группе. Подбор и разработка учебных материалов производятся с учетом предоставления материала в различных формах: аудиальной, визуальной, с использованием специальных технических средств и информационных систем.

Освоение дисциплины лицами с OB3 осуществляется с использованием средств обучения общего и специального назначения (персонального и коллективного использования). Материально-техническое обеспечение предусматривает приспособление аудиторий к нуждам лиц с OB3.

Форма проведения аттестации для студентов-инвалидов устанавливается с учетом индивидуальных психофизических особенностей. Для студентов с ОВЗ предусматривается доступная форма предоставления заданий оценочных средств, а именно:

- в печатной или электронной форме (для лиц с нарушениями опорнодвигательного аппарата);
- в печатной форме или электронной форме с увеличенным шрифтом и контрастностью (для лиц с нарушениями слуха, речи, зрения);
 - методом чтения ассистентом задания вслух (для лиц с нарушениями зрения).

Студентам с инвалидностью увеличивается время на подготовку ответов на контрольные вопросы. Для таких студентов предусматривается доступная форма предоставления ответов на задания, а именно:

- письменно на бумаге или набором ответов на компьютере (для лиц с нарушениями слуха, речи);
- выбором ответа из возможных вариантов с использованием услуг ассистента (для лиц с нарушениями опорно-двигательного аппарата);
 - устно (для лиц с нарушениями зрения, опорно-двигательного аппарата).

При необходимости для обучающихся с инвалидностью процедура оценивания результатов обучения может проводиться в несколько этапов.

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

по дисциплине

«Применение пакетов прикладных программ в механике конструкций»

Специальность	24.05.07 Самолето- и вертолетостроение
Специализация	Самолетостроение
Квалификация выпускника	Инженер
Год начала подготовки (по учебному плану)	2021
Форма обучения	Очная форма
Технология обучения	Традиционная

Курс	Семестр	Трудоемкость, з.е.
5	9	2

Вид промежуточной аттестации	Обеспечивающее подразделение	
Зачёт	Кафедра «Авиастроение»	

1 Перечень планируемых результатов обучения по дисциплине (модулю), соотнесенных с планируемыми результатами образовательной программы

Таблица 1 – Компетенции и индикаторы их достижения

Код и наименование	Индикаторы достижения	Планируемые результаты обу-			
компетенции		чения по дисциплине			
	Профессиональные				
ПК-3 Способен про-	ПК-3.1 Знает методы расчетов	Знать: методы расчетов на			
водить прочностные	на прочность и устойчивость	прочность и устойчивость раз-			
расчеты авиацион-	различных типов конструкций	личных типов конструкций при			
ных конструкций	при статических и динамиче-	статических и динамических			
при проектировании	ских нагрузках	нагрузках			
и конструировании	ПК-3.2 Умеет пользоваться	Уметь: пользоваться про-			
авиационной техни-	программным обеспечением	граммным обеспечением для			
КИ	для моделирования напряжен-	моделирования напряженного			
	ного состояния при статиче-	состояния при статических и			
	ских и динамических нагруз-	динамических нагрузках; ис-			
	ках; использовать норматив-	пользовать нормативно-			
	но-техническую документа-	техническую документацию			
	цию (нормы прочности, авиа-	Владеть: навыками анализа			
	ционные правила, руководство	результатов расчетных и экспе-			
	для конструкторов по прочно-	риментальных исследований в			
	сти)	рамках проектно-			
	ПК-3.3 Владеет навыками	конструкторской и производ-			
	анализа результатов расчет-	ственно-технологической дея-			
	ных и экспериментальных ис-	тельности; навыками интерпре-			
	следований в рамках проект-	тации полученных результатов			
	но-конструкторской и произ-	с целью их использования в			
	водственно-технологической	профессиональной деятельно-			
	деятельности	сти			

Таблица 2 – Паспорт фонда оценочных средств

Контролируемые разделы (темы) дисциплины	Формируемая	Наименование	Показатели
	компетенция	оценочного средства	оценки
1. Прочность и жесткость брусьев и пластин	ПК-3	Лабораторная работа №1 Лабораторная работа №2	Наличие отчета о выполнении лабораторной работы, ответы на контрольные вопросы при защите отчета

		РГР (Задача 1) РГР (Задача 2) РГР (Задача 3)	Умеет строить геометрическую модель конструкции. Умеет задавать модель материала и его механические свойства. Имеет навык настройки конечно-элементной модели, задания нагрузок, граничных и начальных условий. Умеет интерпретировать результаты расчетов.
2. Собственные ко- лебания пластин и оболочек	ПК-3	Лабораторная работа №3 Лабораторная работа №4	Наличие отчета о выполнении лабораторной работы, ответы на контрольные вопросы при защите отчета
		РГР (Задача 4) РГР (Задача 5)	Умеет строить геометрическую модель конструкции. Умеет задавать модель материала и его механические свойства. Имеет навык настройки конечно-элементной модели, задания нагрузок, граничных и начальных условий. Умеет интерпретировать результаты расчетов.
3. Устойчивость оболочек и стержневых конструкций	ПК-3	Лабораторная работа №5 Лабораторная работа №6	Наличие отчета о выполнении лабораторной работы, ответы на контрольные вопросы при защите отчета

		РГР (Задача 6) РГР (Задача 7) РГР (Задача 8)	Умеет строить геометрическую модель конструкции. Умеет задавать модель материала и его механические свойства. Имеет навык настройки конечно-элементной модели, задания нагрузок, граничных и начальных условий. Умеет интерпретировать результаты расчетов.
4. Вынужденные колебания массивных тел и стержневых конструкций	ПК-3	Лабораторная работа №7 Лабораторная работа №8	Наличие отчета о выполнении лабораторной работы, ответы на контрольные вопросы при защите отчета
		РГР (Задача 9) РГР (Задача 10)	Умеет строить геометрическую модель конструкции. Умеет задавать модель материала и его механические свойства. Имеет навык настройки конечно-элементной модели, задания нагрузок, граничных и начальных условий. Умеет интерпретировать результаты расчетов.

2 Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующие процесс формирования компетенций

Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности, представлены в виде технологической карты дисциплины (таблица 3).

Таблица 3 – Технологическая карта

Наименование оценочного средства	Сроки выполнения	Шкала оце- нивания	Критерии оценивания
Лабораторная работа	В течение семестра	8×3 балла	3 балла — Студент предоставил отчет о выполнении лабораторной работы, содержащий все необходимые элементы. Дает верные и точные ответы на контрольные вопросы. 2 балла — Студент предоставил отчет о выполнении лабораторной работы, содержащий неточности либо не все необходимые элементы. Дает неточные ответы на некоторые контрольные вопросы. 1 балл — Студент предоставил отчет о выполнении лабораторной работы, содержащий существенные неточности либо не все необходимые элементы. Дает неточные ответы на контрольные вопросы. 0 баллов - Студент не предоставил отчет.
РГР	В течение семестра	10×3 баллов	3 балла — Студент полностью выполнил задание, показал отличные умения и навыки в рамках усвоенного учебного материала, задача расчетнографической работы оформлена в соответствии с предъявляемыми требованиями. При защите расчетно-графической работы студент продемонстрировал умение строить решение задачи в пакете прикладных программ и навык его интерпретации. 2 балла — Студент не полностью выполнил задание (не смог обосновать оптимальность предложенного решения, допустил неточности, недостатки в оформлении, допустил ошибки в расчетах, не смог интерпретировать резуль-

	таты расчетов и т. д.). При защите расчетно-графической работы студент не в полной мере продемонстрировал умение строить решение задачи в пакете прикладных программ и навык его интерпретации. 1 балл — Студент не выполнил большую часть задания (не смог обосновать оптимальность предложенного решения, допустил неточности, недостатки в оформлении, допустил ошибки в расчетах, не смог интерпретировать результаты расчетов и т. д.). При защите расчетно-графической работы студент не в полной мере продемонстрировал умение строить решение задачи в пакете прикладных программ и навык его интерпретации. 0 баллов - Студент не выполнил задание, или студент выполнил задание с грубыми ошибками, или студент выполнил задание, но при защите РГР не смог объяснить ход решения задачи и не понима-		
	яснить ход решения задачи и не понима- ет смысла написанного, не ориентиру- ется в пакете прикладных программ.		
9 семестр Промежуточная аттестация в форме «Зачет»			
итого:	54 балла		
Критарии опанки	Клитарии ополи паруп татар обущения по писниплина		

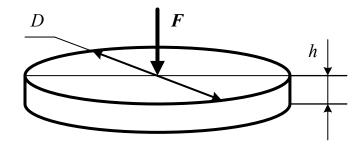
Критерии оценки результатов обучения по дисциплине:

Пороговый (минимальный) уровень для аттестации в форме зачета -75% от максимально возможной суммы баллов

- 3 Типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующие процесс формирования компетенций в ходе освоения образовательной программы
 - 3.1 Задания для текущего контроля успеваемости

Лабораторные работы

Лабораторная работа №1 «Расчет осесимметричного диска на статическую прочность и жесткость» (реализуется в форме практической подготовки)


Постановка задачи

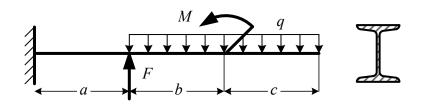
Конструкция. Объектом исследования является жестко защемленный по контуру диск диаметром D=200 мм и толщиной h=5 мм.

Hагрузка. В центре диска действует сосредоточенная сила F = 200 H.

Материал. Материал диска принят линейно-упругим и изотропным с модулем Юнга $E = 200 \ \Gamma \Pi a$ и коэффициентом Пуассона v = 0,3.

Цель. Определить максимальный прогиб диска.

Лабораторная работа №2 «Расчет консольной балки на статическую прочность и жесткость» (реализуется в форме практической подготовки)


Постановка задачи

Конструкция. Объектом исследования является консольная двутавровая балка № 30Б3 (ГОСТ Р 57837-2017), для которой a = b = c = 2 м.

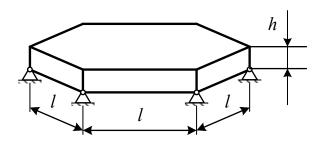
Hагрузка. Изгибающий момент M = 48 кH⋅м, сосредоточенная сила F = 96 кH, распределенная нагрузка q = 12 кH/м.

Материал. Материал балки - сталь 30XГСА с модулем Юнга E=215 ГПа и коэффициентом Пуассона v=0,3.

Цель. Построить эпюры изгибающих моментов, а также определить максимальные по модулю напряжения и максимальный прогиб.

Лабораторная работа №3

«Расчет собственных частот и собственных колебаний шарнирно опертой пластины» (реализуется в форме практической подготовки)


Постановка задачи

Конструкция. Объектом исследования является шестиугольная пластина, шарнирно опёртая по всем вершинам. Длина стороны l=60 мм, толщина пластины h=5 мм.

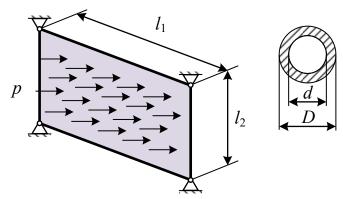
Нагрузка. В центре диска действует сосредоточенная сила F = 200 H.

Материал. Материал пластины — нержавеющая сталь 12X18H10T с плотностью $\rho = 7900 \text{ кг/м}^3$, модулем Юнга E=198 ГПа и модулем сдвига G=77 ГПа.

Цель. Определить первые шесть собственных частот и построить соответствующие формы колебаний.

Лабораторная работа №4

«Расчет собственных частот и собственных колебаний предварительно напряженной шарнирно опертой подкрепленной пластины» (реализуется в форме практической подготовки)


Постановка задачи

Конструкция. Объектом исследования является шарнирно опёртая по углам прямоугольная пластина, подкреплённая по периметру трубами кольцевого сечения. Пластина имеет размеры l_1 =1 м, l_2 =0,5 м, и толщину h = 3 мм. Наружный диаметр трубы D = 20 мм, внутренний – d = 16 мм.

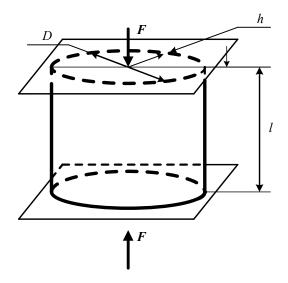
Нагрузка. На пластину действует распределённое нормальное давление p = 3 кПа.

Материал. Трубы выполнены из титанового сплава BT6 с плотностью $\rho = 2780 \text{ кг/м}^3$, модулем Юнга E = 125 ГПа и коэффициентом Пуассона $\nu = 0,31$. Материал пластины алюминиевый сплав 1933T2 с плотностью $\rho = 2850 \text{ кг/м}^3$, модулем Юнга E = 72 ГПа и коэффициентом Пуассона $\nu = 0,33$.

Цель. Определить собственные частоты в диапазоне от 100 до 150 Гц и построить соответствующие формы колебаний.

Лабораторная работа №5

«Расчет на устойчивость цилиндрической оболочки при продольном сжатии» (реализуется в форме практической подготовки)


Постановка задачи

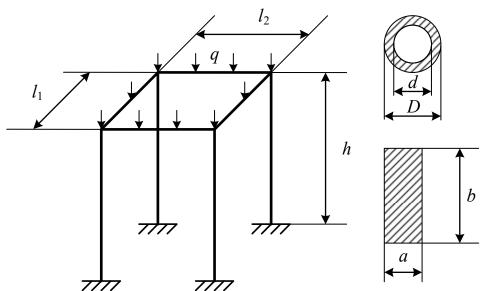
Конструкция. Объектом исследования является цилиндрическая оболочка со средним диаметром D=60 мм, длиной l=150 мм и толщиной стенки h=0.5 мм.

Hагрузка. Оболочка испытывает сжатие в осевом направлении с силой F.

Материал. Материал оболочки - алюминиевый сплав Д16Т с модулем Юнга E=70 ГПа и коэффициентом Пуассона $\nu=0,33$.

Цель. Определить критическую силу потери устойчивости, построить форму потери устойчивости.

Лабораторная работа №6 «Расчет на устойчивость пространственной рамы» (реализуется в форме практической подготовки)


Постановка задачи

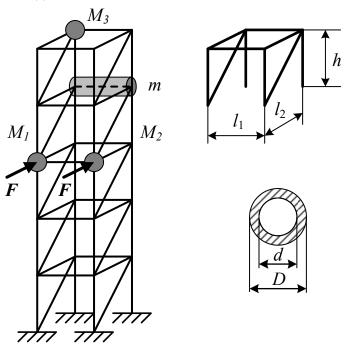
Конструкция. Объектом исследования является пространственная рама, состоящая из прямоугольного пояса, установленного на четыре опоры. Длины балок пояса $l_1=300$ мм, $l_1=400$ мм, длина опор h=500 мм. Пояс выполнен из балок прямоугольного сечения со сторонами a=10 мм, b=20 мм. Опоры выполнены из труб кольцевого сечения с наружным диаметром D=20 мм и внутренним d=16 мм.

Нагрузка. На пояс рамы действует распределённая нагрузка q = 10 H/мм.

Материал. Материал балок пояса — Сталь 25 с модулем Юнга E=198 ГПа и модулем сдвига G=81 ГПа. Материал балок опор — Сталь 40 с модулем Юнга E=212 ГПа и модулем сдвига G=82 ГПа.

Цель. Определить максимальные по модулю напряжения и коэффициент запаса по устойчивости.

Лабораторная работа №7 «Расчёт колонны с сосредоточенными и распределённой массами» (реализуется в форме практической подготовки)


Постановка задачи

Конструкция. Объектом исследования является жёстко защемлённая колонна с сосредоточенными и распределённой массами. Сосредоточенные и распределённая массы имитируют размещённое на колонне оборудование. Колонна выполнена из балок кольцевого сечения с наружным диаметром D=30 мм и внутренним d=26 мм. Колонна состоит из пяти идентичных секций. Высота одной секции h=600 мм, ширина $l_1=400$ мм, глубина секции $l_2=500$ мм. Сосредоточенные массы $M_1=M_2=10$ кг, $M_3=5$ кг. Распределённая масса m=35 кг.

Hагрузка. В точках расположения сосредоточенных масс M_1 и M_2 действуют сосредоточенные силы F = 200 H в диапазоне частот f = 0... 25 Γ ц.

Материал. Материал колонны Сталь 45 с плотностью $\rho = 7850$ кг/м³, модулем Юнга E = 200 ГПа и модулем сдвига G = 78 ГПа.

Цель. Построить амплитудно-частотную характеристику для точки с сосредоточенной массой M_3 в направлении действия сил F.

Лабораторная работа №8 «Расчет прочности кронштейна при циклических нагрузках» (реализуется в форме практической подготовки)

Постановка задачи

Конструкция. Объектом исследования является кронштейн. Диаметр отверстия под втулку d=15 мм, радиусс отверстий под крепёж R=3,5 мм. Высота кронштейна H=120 мм, ширина L=60 мм. Толщины: $h_1=5$ мм, $h_2=7$ мм, $h_3=15$ мм. Размеры: a=20 мм, b=40 мм, c=15 мм, l=50 мм, D=30 мм. Кронштейн жёстко зафиксирован через отверстия под крепёж.

 $\it Haгрузка$. На кронштейн в отверстии под втулку действует усилие $\it F=2000~{
m H}$ с частотой $\it f=10~{
m \Gamma μ}$.

Материал. Кронштейн выполнен из титанового сплава BT6 с плотностью $\rho=2780$ кг/м³, модулем Юнга E=125 ГПа и коэффициентом Пуассона $\nu=0,31$.

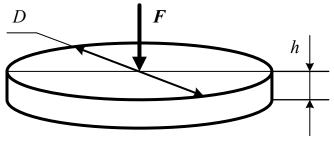
Цель. Определить максимальные эквивалентные напряжения кронштейна по теории прочности Мизеса–Генки и теории прочности Треска– Сен-Венана.

Расчетно-графическая работа (типовой вариант)

Расчетно-графическая работа состоит в решении задач. РГР следует оформлять в соответствии с РД ФГБОУ ВО «КнАГУ» 013-2016 «Текстовые студенческие работы. Правила оформления». В работе должна быть отражена последовательность решения задачи и приведены скриншоты из программы, поясняющие ход решения.

Расчетно-графическая работа подлежит защите. Студент должен продемонстрировать умения и навыки использования пакета прикладных программ: обосновать применение расчетного модуля, уметь строить геометрическую модель, задавать механические свойства материалов в соответствии с выбранной моделью, задавать нагрузки и граничные условия. Также студент должен продемонстрировать навык использования пакета прикладных программ, а именно в правильном порядке выполнять последовательность необходимых действий, приводящих к решению задачи. В случае, если студент не может объяснить ход решения задачи, РГР считается невыполненной.

Задача 1

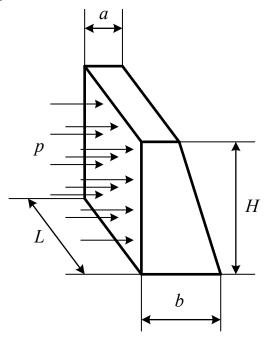

Постановка задачи

Конструкция. Объектом исследования является жестко защемленный по контуру диск диаметром D=200 мм и толщиной h=5 мм.

Нагрузка. В центре диска действует сосредоточенная сила F = 200 H.

Материал. Материал диска принят линейно-упругим и изотропным с модулем Юнга $E=200~\Gamma\Pi a$ и коэффициентом Пуассона v=0,3.

Цель. Определить максимальный прогиб диска.


Задача 2

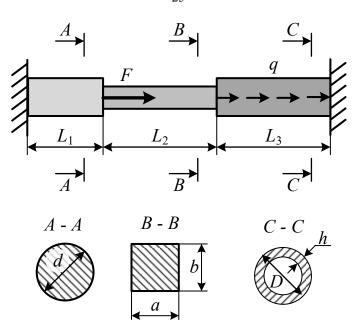
Постановка задачи

Конструкция. Объектом исследования является ограждение длиной L=1 м, сечение которого - прямоугольная трапеция. Высота трапеции H=1 м, основания трапеции a=0,2 м и b=0,3 м. Большее основание трапеции жёстко зафиксировано.

Hагрузка. На ограждение действует распределённое нормальное давление p=1 МПа. Mатериал. Материал ограждения - бетон.

Цель. Определить максимальное перемещение ограждения в направлении действия давления и реакции в опоре.

Задача 3

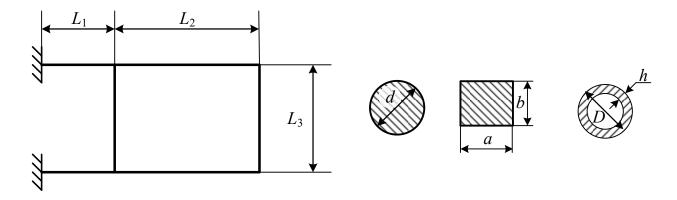

Постановка задачи

Конструкция. Объектом исследования является ступенчатый стержень, жестко защемленный по двум торцам. Стержень имеет три участка с длинами L_1 , L_2 , L_3 . Каждый участок имеет свое поперечное сечение (круглое, прямоугольное, кольцевое).

Hагрузка. На стержень действует сосредоточенная осевая сила F (H) и распределенная осевая сила q (H/мм).

Материал. Материал стержня принят упругим и изотропным с модулем Юнга E = 200 ГПа и коэффициентом Пуассона v = 0,3.

Цель. Построить эпюру внутренних силовых факторов, построить эпюру перемещений. Определить максимальное перемещение.


Задача 4

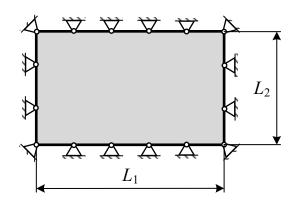
Постановка задачи

Конструкция. Объектом исследования является плоская рама переменного сечения с длинами прямолинейных участков L_1 (мм), L_2 (мм), L_3 (мм). Участки рамы длиной L_1 имеют круглое поперечное сечение с диаметром d (мм), длиной L_2 — прямоугольное сечение со сторонами a (мм) и b (мм), участки L_3 имеют кольцевое сечение с внешним диаметром D (мм) и толщиной h (мм).

Материал. Материал рамы Сталь 10 с плотностью с плотностью $\rho = 7856$ кг/м³, модулем сдвига G = 78 ГПа и коэффициентом Пуассона v = 0,3.

Цель. Определить первую частоту собственных колебаний. Построить форму колебаний первой собственной частоты.

Задача 5


Постановка задачи

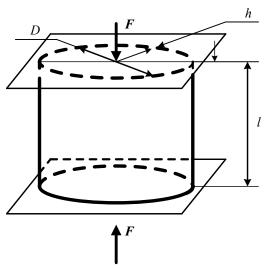
Конструкция. Объектом исследования является шарнирно опертая прямоугольная пластина постоянной толщины h (мм) с длинами сторон L_1 (мм) и L_2 (мм).

Hагрузка. На стержень действует сосредоточенная осевая сила F (H) и распределенная осевая сила q (H/мм).

Материал. Материал пластины алюминиевый сплав 1933Т2 с плотностью $\rho = 2850$ кг/м³, модулем Юнга E = 72 ГПа и коэффициентом Пуассона $\nu = 0.33$.

Цель. Определить первую частоту собственных колебаний и построить форму колебаний первой собственной частоты.

Задача 6


Постановка задачи

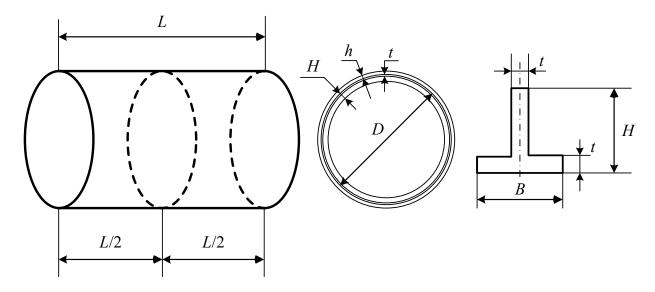
Kонструкция. Объектом исследования является цилиндрическая оболочка со средним диаметром D (мм), длиной l (мм) и толщиной стенки h (мм).

Hагрузка. Оболочка испытывает сжатие в осевом направлении с силой F.

Материал. Материал оболочки - алюминиевый сплав Д16Т с модулем Юнга $E=70~\Gamma\Pi a$ и коэффициентом Пуассона v=0,33.

Цель. Определить критическую силу потери устойчивости, построить форму потери устойчивости.

Задача 7


Постановка задачи

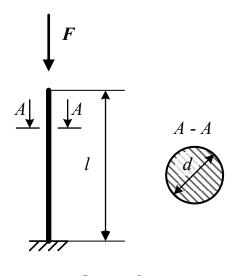
Конструкция. Объектом исследования является цилиндрическая оболочка длиной L=100 см, внутренним диаметром D=70 см и толщиной стенки h=0,3 см. Оболочка подкреплена по внутреннему диаметру тремя шпангоутами таврового сечения, имеющего следующие размеры: H=3 см, B=4,5 см, t=0,3 см. Шпангоуты установлены с шагом L/2.

Нагрузка. Оболочка нагружена внешним давлением.

Материал. Материал оболочки - алюминиевый сплав Д16Т с модулем Юнга E=70 ГПа и коэффициентом Пуассона $\nu=0.33$.

Цель. Определить критическое давление потери устойчивости.

Задача 8


Постановка задачи

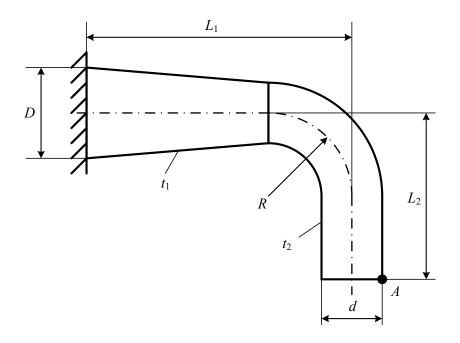
Конструкция. Объектом исследования является консольный стержень постоянного сечения длиной l (мм). Сечение стрежня - круг диаметром d (мм).

Hагрузка. К свободному торцу стержня приложена осевая сила F (H).

Материал. Материал стержня принят упругим и изотропным с модулем Юнга E=200 ГПа и коэффициентом Пуассона v=0,3.

Цель. Определить коэффициент запаса устойчивости.

Задача 9

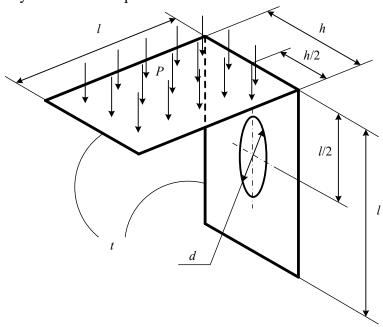

Постановка задачи

Конструкция. Объектом исследования является жёстко защемлённый одним торцом патрубок кольцевого сечения. Размеры патрубка следующие: D=30 мм, d=20 мм, $L_1=180$ мм, $L_2=70$ мм, R=30 мм; толщины участков патрубка $t_1=2$ мм, $t_2=1$ мм.

Hагрузка. Через жёстко защемлённый торец патрубка передаётся вибрация в вертикальном направлении с ускорением 1 м/с² в диапазоне частот $f_1 \pm 20$ Γ ц, где f_1 — первая собственная частота.

Материал. Материал патрубка — нержавеющая сталь 12X18H10T с плотностью с плотностью $\rho = 7900 \text{ кг/м}^3$, модулем Юнга E = 198 ГПа и модулем сдвига G = 77 ГПа.

Цель. Определить перемещения точки A в вертикальном направлении для частот колебаний $f_1 + 20$ Γ ц и $f_1 - 20$ Γ ц.


Задача 10

Постановка задачи

Конструкция. Объектом исследования является уголок шириной h (мм), длиной полок l (мм) и толщиной t (мм). Уголок жестко закреплен по контуру отверстия диаметром d (мм). Hагрузка. Уголок нагружен равномерно распределенной нагрузкой, равнодействующая которой равна P (H) с частот f = 5 Γ ц. Коэффициент затухания принять равным 0,03.

Материал. Материал уголка – Structural Steel (стандартный материал ANSYS).

Цель. Определить максимальные эквивалентные напряжения по теории прочности Мизеса-Генки в полке уголка без отверстия.

Лист регистрации изменений к РПД

№ п/п	Основание внесения изменения	Количество страниц изменения	Подпись разработчика РПД