Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования «Комсомольский-на-Амуре государственный университет»

УТВЕРЖДАЮ

Декан факультета

Энергетики и управления

(наименование факультета)

А.С. Гудим (подпись, ФИО) (20-1/г.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

«Навигационные системы летательных аппаратов»

Направление подготовки	11.03.04 Электроника и наноэлектроника
Направленность (профиль) образовательной программы	Промышленная электроника
Квалификация выпускника	Бакалавр
Год начала подготовки (по учебному плану)	2020
Форма обучения	Заочная форма
Технология обучения	Традиционная

Курс	Семестр	Трудоемкость, з.е.
4	7	3

Вид промежуточной аттестации	Обеспечивающее подразделение	
Зачет с оценкой	Кафедра «Промышленная электроника»	

Разработчик рабочей программы:

Кандидат технических наук

Киба Д.А

СОГЛАСОВАНО:

Заведующий кафедрой Кафедра «Промышленная электроника»

Любушкина Н.Н.

1 Введение

Рабочая программа и фонд оценочных средств дисциплины «Навигационные системы летательных аппаратов» составлены в соответствии с требованиями федерального государственного образовательного стандарта, утвержденного приказом Минобрнауки Российской Федерации, и основной профессиональной образовательной программы подготовки «Промышленная электроника» по направлению подготовки «11.03.04 Электроника и наноэлектроника».

Задачи дисци-плины	Изучить принципы построения навигационных систем летательных аппаратов, их состав, размещение, порядок и режимы использования. Ознакомиться с основами теории навигации летательных аппаратов, техническими средствами навигационных систем летательных аппаратов наземных объектов. Научиться производить расчеты и измерения основных характеристик навигационных систем летательных аппаратов. Изучить принципы построения функциональных схем навигационных систем летательных аппаратов, использования вычислительной техники для их исследования
Основные разделы / темы дисциплины	 Основы навигации летательных аппаратов. Характеристики навигационных систем летательных аппаратов. Аппаратные средства решения задач навигации летательных аппаратов.

2 Перечень планируемых результатов обучения по дисциплине (модулю), соотнесенных с индикаторами достижения компетенций

Процесс изучения дисциплины «Навигационные системы летательных аппаратов» направлен на формирование следующих компетенций в соответствии с ФГОС ВО и основной образовательной программой (таблица 1):

Таблица 1 – Компетенции и индикаторы их достижения

Код и наименование компетен- ции	Индикаторы достижения	Планируемые результаты обучения по дисциплине	
	Профессиональные		
ПК-1 Способен выполнять расчет и проектирование электронных приборов, схем и устройств различного функционального назначения	ПК-1.1 Знает принципы конструирования отдельных аналоговых блоков электронных приборов ПК-1.2 Умеет проводить оценочные расчеты характеристик электронных приборов ПК-1.3 Владеет навыками подготовки принципиальных и монтажных электрических схем	Знать принципы конструирования отдельных аналоговых блоков электронных приборов Уметь проводить оценочные расчеты характеристик электронных приборов Владеть навыками подготовки принципиальных и монтажных электрических схем	

3 Место дисциплины (модуля) в структуре образовательной программы

Дисциплина «Навигационные системы летательных аппаратов» изучается на 4 курсе, 7 семестре.

Дисциплина входит в состав блока 1 «Дисциплины (модули)» и относится к базовой части.

Для освоения дисциплины необходимы знания, умения, навыки и / или опыт практической деятельности, сформированные в процессе изучения дисциплин / практик: «Электрические машины», «Микросхемотехника аналоговых и цифровых устройств».

Знания, умения и навыки, сформированные при изучении дисциплины «Навигационные системы летательных аппаратов», будут востребованы при изучении последующих дисциплин: «Системы обработки и кодирования информации», «Моделирование электронных схем», «Источники вторичного электропитания», «Производственная практика (технологическая (проектно-технологическая) практика)», «Производственная практика (преддипломная практика)».

Дисциплина «Навигационные системы летательных аппаратов» в рамках воспитательной работы направлена на формирование у обучающихся активной гражданской позиции, уважения к правам и свободам человека, знания правовых основ и законов, воспитание чувства ответственности или умения аргументировать, самостоятельно мыслить, развивает творчество, профессиональные умения или творчески развитой личности, системы осознанных знаний, ответственности за выполнение учебно-производственных заданий и т.д.

4 Объем дисциплины (модуля) в зачетных единицах с указанием количества академических часов, выделенных на контактную работу обучающихся с преподавателем (по видам учебных занятий) и на самостоятельную работу обучающихся

Общая трудоемкость (объем) дисциплины составляет 3 з.е., 108 акад. час. Распределение объема дисциплины (модуля) по видам учебных занятий представлено в таблице 2.

Таблица 2 – Объем дисциплины (модуля) по видам учебных занятий

Объем дисциплины	Всего академических часов
Общая трудоемкость дисциплины	108
Контактная аудиторная работа обучающихся с преподавателем (по видам учебных занятий), всего	10
В том числе:	
занятия лекционного типа (лекции и иные учебные занятия, предусматривающие преимущественную передачу учебной информации педагогическими работниками)	6
занятия семинарского типа (семинары, практические занятия, практикумы, лабораторные работы, коллоквиумы и иные аналогичные занятия)	4
Самостоятельная работа обучающихся и контактная работа, включающая групповые консультации, индивидуальную работу обучаю-	94

щихся с преподавателями (в том числе индивидуальные консультации); взаимодействие в электронной информационно-образовательной среде вуза		
Промежуточная аттестация обучающихся – Зачет с оценкой	4	

5 Содержание дисциплины (модуля), структурированное по темам (разделам) с указанием отведенного на них количества академических часов и видов учебной работы

Таблица 3 – Структура и содержание дисциплины (модуля)

Наименование разделов, тем и содержание материала	Виды учебной работы, включая самостоятельную работу обучающихся и трудоемкость (в часах)			
	Контакт	ная работа преподан щимися	вателя с обучаю-	CPC
	Лекции	Семинарские (практические занятия)	Лабораторные занятия	
Раздел 1 Радиотехнические сред- ства навигации				
Тема 1.1 Организация радиотехнического обеспечения полетов	0.2			
Тема 1.2 Общая характеристика радиотехнических средств (РТСр) обеспечения полетов	0.2			
Тема 1.3 Эксплуатационно- технические характеристики РТСр	0.5			
Тема 1.4 Физические основы радионавигации	0.5			
Решение задач в среде LabVIEW. Устройство NI USRP-2953R, его настройка и принципы работы в программе RADAR Signal Simulator			0.44	
Устройство формирования и согласованной фильтрации импульсного сигнала с линейной частотной модуляцией			0.75	
Изучение теоретических разделов дисциплины, подготовка к занятиям семинарского типа, подготовка и оформление расчетно-графической работы				20

Раздел 2 Методы измерения основных характеристик наземных радиотехнических средств навигации			
Тема 2.1 Методы радиолокационного обзора пространства	0.3		
Тема 2.2 Методы определения местоположения объектов	0.3		
Тема 2.3 Метод измерения угловой скорости движения объектов	0.3		
Тема 2.4 Методы построения измерителей навигационных параметров следящего типа	0.2		
Устройство формирования и согла- сования фильтрации импульсного сигнала с фазовой псевдослучайной манипуляцией		0.75	
Устройство формирования и корреляции обработки импульсного сигнала с фазовой псевдослучайной манипуляцией		0.75	
Изучение теоретических разделов дисциплины, подготовка к занятиям семинарского типа, подготовка и оформление расчетно-графической работы			27
Раздел 3 Виды наземных радио- технических средств навигации			
Тема 3.1 Наземные РТСр обеспечения полетов	0.5		
Тема 3.2 Маркерные радиомаяки	0.5		
Тема 3.3 Радиомаячные системы посадки (РМСП)	0.5		
Тема 3.4 Наземные радиопеленгаторы	0.5		
Тема 3.5 Дальномерные радионави- гационные системы	0.5		
Тема 3.6 Угломерно-дальномерные радионавигационные системы	0.5		
Тема 3.7 Наземные радиолокацион-	0.5		

ные системы				
Цифровое устройство обнаружение пачки когерентных импульсов на фоне пассивных помех			0.44	
Построение специализированного процессора цифровой обработки некогерентной пачки радиоимпульсов обзорной РЛС			0.44	
Построение специализированного процессора цифровой обработки пачки некогерентных радиоимпульсов обзорной РЛС в режиме ложной тревоги			0.44	
Изучение теоретических разделов дисциплины, подготовка к занятиям семинарского типа, подготовка и оформление расчетно-графической работы				47
ИТОГО по дисциплине	6	-	4	94

6 Внеаудиторная самостоятельная работа обучающихся по дисциплине (модулю)

При планировании самостоятельной работы студенту рекомендуется руководствоваться следующим распределением часов на самостоятельную работу (таблица 4):

Таблица 4 – Рекомендуемое распределение часов на самостоятельную работу

Компоненты самостоятельной работы	Количество часов
Изучение теоретических разделов дисциплины	30
Подготовка к занятиям семинарского типа	30
Подготовка и оформление Расчетно-графической работы	34
	94

7 Оценочные средства для проведения текущего контроля и промежуточной аттестации обучающихся по дисциплине (модулю)

Фонд оценочных средств для проведения текущего контроля успеваемости и промежуточной аттестации представлен в Приложении 1.

Полный комплект контрольных заданий или иных материалов, необходимых для оценивания результатов обучения по дисциплине (модулю), практике хранится на кафедре-разработчике в бумажном и электронном виде.

8 Учебно-методическое и информационное обеспечение дисциплины (модуля)

8.1 Основная литература

- 1) Скрыпник, О.Н. Радионавигационные системы воздушных судов [Электронный ресурс]: Учебник. М.: ИНФРА-М, 2014. 348 с. // ZNANIUM.COM : электронно-библиотечная система. Режим доступа: http://znanium.com/bookread2.php?book=399612, ограниченный. Загл. с экрана.
- 2) Тяпкин, В.Н. Методы определения навигационных параметров подвижных средств с использованием спутниковой радионавигационной системы ГЛОНАСС [Электронный ресурс]: монография / В.Н. Тяпкин, Е.Н. Гарин. Красноярск: Сиб. федер. ун-т, 2012. 260 с. // ZNANIUM.COM: электронно-библиотечная система. Режим доступа: http://znanium.com/bookread2.php?book=442662, ограниченный. Загл. с экрана.
- 3) Афонин, А.А. Микропроцессорная техника в приборах, системах и комплексах ориентации, навигации и управления летательных аппаратов [Электронный ресурс] : учебное пособие к лабораторным работам / А.А. Афонин, Г.Г. Ямашев. Электрон. текстовые данные. Саратов: Ай Пи Эр Медиа, 2015. 143 с. // IPRbooks : электроннобиблиотечная система. Режим доступа: http://www.iprbookshop.ru/40398.html, ограниченный. Загл. с экрана.

8.2 Дополнительная литература

- 1) Датчики [Электронный ресурс] : справочное пособие / В.М. Шарапов [и др.]. Электрон. текстовые данные. М. : Техносфера, 2012. 624 с. // IPRbooks : электронно-библиотечная система. Режим доступа: http://www.iprbookshop.ru/16974.html, ограниченный. Загл. с экрана.
- 2) Ботов, М. И. Введение в теорию радиолокационных систем [Электронный ресурс] : монография / М. И. Ботов, В. А. Вяхирев, В. В. Девотчак; ред. М. И. Ботов. Красноярск: Сиб. федер. ун-т, 2012. 394 с. // ZNANIUM.COM: электронно-библиотечная система. Режим доступа: http://znanium.com/bookread2.php?book=492976, ограниченный. Загл. с экрана.
- 3) Козлов, В.Г. Техническая эксплуатация радиоэлектронного оборудования [Электронный ресурс] : учебное пособие / В.Г. Козлов. Электрон. текстовые данные. Томск: Томский государственный университет систем управления и радиоэлектроники, Эль Контент, 2012. 133 с. // IPRbooks : электронно-библиотечная система. Режим доступа: http://www.iprbookshop.ru/13988.html, ограниченный. Загл. с экрана.
- 4) Мелихов, С.В. Введение в специальность "Средства связи с подвижными объектами" [Электронный ресурс] : учебное пособие / С.В. Мелихов, И.А. Колесов. Электрон. текстовые данные. Томск: Томский государственный университет систем управления и радиоэлектроники, 2009. 154 с. // IPRbooks : электронно-библиотечная система. Режим доступа: http://www.iprbookshop.ru/13926.html, ограниченный. Загл. с экрана.

8.3 Методические указания для студентов по освоению дисциплины

- 1) Амосов, О.С. Моделирование и исследование цифрового гироскопа с использованием оборудования NI MyRIO и датчика Gyroscope: методические указания к лабораторным работам [Текст] / О.С. Амосов, С.Г. Баена. Комсомольск-на-Амуре: ФГБОУ ВО «КнАГТУ», 2016. 22 с. (Методические указания от кафедры ПЭ 30 экз.).
- 2) Амосов, О.С. Моделирование и исследование цифрового компаса с использованием оборудования MyRIO NI и датчика Compass: методические указания к лабораторным работам [Текст] / О.С. Амосов, С.Г. Баена Комсомольск-на-Амуре: ФГБОУ ВО «КнАГТУ», 2016. 24 с. (Методические указания от кафедры ПЭ 30 экз.).
- 3) Амосов, О.С. Изучение принципов работы и управления в системе вертикального взлета и посадки летательного аппарата с использованием платформы ELVIS NI и тренажера QNET VTOL. Управление по току [Текст]: методические указания к лабора-

торным работам /сост.: О.С. Амосов, С.Г. Баена. - Комсомольск-на-Амуре: ФГБОУ ВО «КнАГТУ», 2016.-21 с. (Методические указания от кафедры $\Pi 9-30$ экз.)

- 4) Моделирование и исследование датчиков и устройств радиоэлектронных и радиотехнических систем: учеб. пособие / Сост. О.С. Амосов, С.Г. Амосова. Комсомольск-на-Амуре: ФГБОУ ВО «КнАГУ», 2018. 135 с.
 - 8.4 Современные профессиональные базы данных и информационные справочные системы, используемые при осуществлении образовательного процесса по дисциплине
 - 1) Электронная библиотечная система http://www.znanium.com.
 - 2) Электронный портал научной литературы http://www.elibrary.ru.

8.5 Перечень ресурсов информационно-телекоммуникационной сети «Интернет», необходимых для освоения дисциплины (модуля)

- 1) Бортовые радиоэлектронные системы http://repo.ssau.ru
- 2) Система радиосвязи с подвижными объектами http://findpatent.ru>patent
- 3) Система радиосвязи с подвижными объектами http://edrid.ru>rid

8.6 Лицензионное и свободно распространяемое программное обеспечение, используемое при осуществлении образовательного процесса по дисциплине

Таблица 7 – Перечень используемого программного обеспечения

Наименование ПО	Реквизиты / условия использования
Microsoft Imagine Premium	Лицензионный договор АЭ223 №008/65 от 11.01.2019
OpenOffice	Свободная лицензия, условия использования по ссылке:
	https://www.openoffice.org/license.html
NI LabView	Академическая лицензия, договор АЭ44 № 036/51 от
	04.02.2015, Лицензионный диск № 781851-3599

9 Организационно-педагогические условия

Организация образовательного процесса регламентируется учебным планом и расписанием учебных занятий. Язык обучения (преподавания) - русский. Для всех видов аудиторных занятий академический час устанавливается продолжительностью 45 минут.

При формировании своей индивидуальной образовательной траектории обучающийся имеет право на перезачет соответствующих дисциплин и профессиональных модулей, освоенных в процессе предшествующего обучения, который освобождает обучающегося от необходимости их повторного освоения.

9.1 Образовательные технологии

Учебный процесс при преподавании курса основывается на использовании традиционных, инновационных и информационных образовательных технологий. Традиционные образовательные технологии представлены лекциями и семинарскими (практическими) занятиями. Инновационные образовательные технологии используются в виде широкого применения активных и интерактивных форм проведения занятий. Информационные образовательные технологии реализуются путем активизации самостоятельной работы студентов в информационной образовательной среде.

9.2 Занятия лекционного типа

Лекционный курс предполагает систематизированное изложение основных вопросов учебного плана.

На первой лекции лектор обязан предупредить студентов, применительно к какому базовому учебнику (учебникам, учебным пособиям) будет прочитан курс.

Лекционный курс должен давать наибольший объем информации и обеспечивать более глубокое понимание учебных вопросов при значительно меньшей затрате времени, чем это требуется большинству студентов на самостоятельное изучение материала.

9.3 Занятия семинарского типа

Семинарские занятия представляют собой детализацию лекционного теоретического материала, проводятся в целях закрепления курса и охватывают все основные разделы.

Основной формой проведения семинаров является обсуждение наиболее проблемных и сложных вопросов по отдельным темам, а также разбор примеров и ситуаций в аудиторных условиях. В обязанности преподавателя входят: оказание методической помощи и консультирование студентов по соответствующим темам курса.

Активность на семинарских занятиях оценивается по следующим критериям:

- ответы на вопросы, предлагаемые преподавателем;
- участие в дискуссиях;
- выполнение проектных и иных заданий;
- ассистирование преподавателю в проведении занятий.

Ответ должен быть аргументированным, развернутым, не односложным, содержать ссылки на источники.

Доклады и оппонирование докладов проверяют степень владения теоретическим материалом, а также корректность и строгость рассуждений.

Оценивание заданий, выполненных на семинарском занятии, входит в накопленную оценку.

9.4 Самостоятельная работа обучающихся по дисциплине (модулю)

Самостоятельная работа студентов — это процесс активного, целенаправленного приобретения студентом новых знаний, умений без непосредственного участия преподавателя, характеризующийся предметной направленностью, эффективным контролем и оценкой результатов деятельности обучающегося.

Цели самостоятельной работы:

- систематизация и закрепление полученных теоретических знаний и практических умений студентов;
 - углубление и расширение теоретических знаний;
- формирование умений использовать нормативную и справочную документацию, специальную литературу;
- развитие познавательных способностей, активности студентов, ответственности и организованности;
- формирование самостоятельности мышления, творческой инициативы, способностей к саморазвитию, самосовершенствованию и самореализации;
 - развитие исследовательских умений и академических навыков.

Самостоятельная работа может осуществляться индивидуально или группами студентов в зависимости от цели, объема, уровня сложности, конкретной тематики.

Технология организации самостоятельной работы студентов включает использование информационных и материально-технических ресурсов университета.

Контроль результатов внеаудиторной самостоятельной работы студентов может проходить в письменной, устной или смешанной форме.

Студенты должны подходить к самостоятельной работе как к наиважнейшему средству закрепления и развития теоретических знаний, выработке единства взглядов на отдельные вопросы курса, приобретения определенных навыков и использования профессиональной литературы.

9.5 Методические указания для обучающихся по освоению дисциплины

При изучении дисциплины обучающимся целесообразно выполнять следующие рекомендации:

- 1. Изучение учебной дисциплины должно вестись систематически.
- 2. После изучения какого-либо раздела по учебнику или конспектным материалам рекомендуется по памяти воспроизвести основные термины, определения, понятия раздела.
- 3. Особое внимание следует уделить выполнению отчетов по практическим занятиям и индивидуальным комплексным заданиям на самостоятельную работу.
- 4. Вся тематика вопросов, изучаемых самостоятельно, задается на лекциях преподавателем. Им же даются источники (в первую очередь вновь изданные в периодической научной литературе) для более детального понимания вопросов, озвученных на лекции.

При самостоятельной проработке курса обучающиеся должны:

- просматривать основные определения и факты;
- повторить законспектированный на лекционном занятии материал и дополнить его с учетом рекомендованной по данной теме литературы;
- изучить рекомендованную литературу, составлять тезисы, аннотации и конспекты наиболее важных моментов;
 - самостоятельно выполнять задания, аналогичные предлагаемым на занятиях;
 - использовать для самопроверки материалы фонда оценочных средств.

10 Описание материально-технического обеспечения, необходимого для осуществления образовательного процесса по дисциплине (модулю)

10.1 Учебно-лабораторное оборудование

Таблица 8 — Перечень оборудования лаборатории

Аудитория	Наименование аудитории (лаборатории)	Используемое оборудование	
211/3	Лаборатория компьютерного проектирования и моделирования	персональные компьютеры NI myRIO и набор датчиков Mechatronics Kit	
306/3	Лаборатория радиоэлектроники	персональные компьютеры устройство NI USRP-2953R	

10.2 Технические и электронные средства обучения

При проведении занятий используется аудитория, оборудованная проектором (стационарным или переносным) для отображения презентаций. Кроме того, при проведении лекций и практических занятий необходим компьютер с установленным на нем браузером и программным обеспечением для демонстрации презентаций.

11 Иные сведения

Методические рекомендации по обучению лиц с ограниченными возможностями здоровья и инвалидов

Освоение дисциплины обучающимися с ограниченными возможностями здоровья может быть организовано как совместно с другими обучающимися, так и в отдельных группах. Предполагаются специальные условия для получения образования обучающимися с ограниченными возможностями здоровья.

Профессорско-педагогический состав знакомится с психолого-физиологическими особенностями обучающихся инвалидов и лиц с ограниченными возможностями здоровья, индивидуальными программами реабилитации инвалидов (при наличии). При необходимости осуществляется дополнительная поддержка преподавания тьюторами, психологами, социальными работниками, прошедшими подготовку ассистентами.

В соответствии с методическими рекомендациями Минобрнауки РФ (утв. 8 апреля 2014 г. N АК-44/05вн) в курсе предполагается использовать социально-активные и рефлексивные методы обучения, технологии социокультурной реабилитации с целью оказания помощи в установлении полноценных межличностных отношений с другими студентами, создании комфортного психологического климата в студенческой группе. Подбор и разработка учебных материалов производятся с учетом предоставления материала в различных формах: аудиальной, визуальной, с использованием специальных технических средств и информационных систем.

Освоение дисциплины лицами с OB3 осуществляется с использованием средств обучения общего и специального назначения (персонального и коллективного использования). Материально-техническое обеспечение предусматривает приспособление аудиторий к нуждам лиц с OB3.

Форма проведения аттестации для студентов-инвалидов устанавливается с учетом индивидуальных психофизических особенностей. Для студентов с ОВЗ предусматривается доступная форма предоставления заданий оценочных средств, а именно:

- в печатной или электронной форме (для лиц с нарушениями опорнодвигательного аппарата);
- в печатной форме или электронной форме с увеличенным шрифтом и контрастностью (для лиц с нарушениями слуха, речи, зрения);
 - методом чтения ассистентом задания вслух (для лиц с нарушениями зрения).

Студентам с инвалидностью увеличивается время на подготовку ответов на контрольные вопросы. Для таких студентов предусматривается доступная форма предоставления ответов на задания, а именно:

- письменно на бумаге или набором ответов на компьютере (для лиц с нарушениями слуха, речи);
- выбором ответа из возможных вариантов с использованием услуг ассистента (для лиц с нарушениями опорно-двигательного аппарата);
 - устно (для лиц с нарушениями зрения, опорно-двигательного аппарата).

При необходимости для обучающихся с инвалидностью процедура оценивания результатов обучения может проводиться в несколько этапов.

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

по дисциплине

«Навигационные системы летательных аппаратов»

Направление подготовки	11.03.04 Электроника и наноэлектроника
Направленность (профиль) образовательной программы	Промышленная электроника
Квалификация выпускника	Бакалавр
Год начала подготовки (по учебному плану)	2020
Форма обучения	Заочная форма
Технология обучения	Традиционная

Курс	Семестр	Трудоемкость, з.е.	
4	7	3	

Вид промежуточной аттестации	Обеспечивающее подразделение	
Зачет с оценкой	Кафедра «Промышленная электроника»	

1 Перечень планируемых результатов обучения по дисциплине (модулю), соотнесенных с индикаторами достижения компетенций

Таблица 1 – Компетенции и индикаторы их достижения

Код и наименование компетен- ции	Индикаторы достижения	Планируемые результаты обучения по дисциплине
	Профессиональные	
ПК-1 Способен выполнять расчет и проектирование электронных приборов, схем и устройств различного функционального назначения	ПК-1.1 Знает принципы конструирования отдельных аналоговых блоков электронных приборов ПК-1.2 Умеет проводить оценочные расчеты характеристик электронных приборов ПК-1.3 Владеет навыками подготовки принципиальных и монтажных электрических схем	Знать принципы конструирования отдельных аналоговых блоков электронных приборов Уметь проводить оценочные расчеты характеристик электронных приборов Владеть навыками подготовки принципиальных и монтажных электрических схем

Таблица 2 – Паспорт фонла оценочных средств

Контролируемые разделы (темы) дисциплины	Формируемая компетенция	Наименование оценочного средства	Показатели оценки
Разделы 1-3	ОПК-2	Тест	Правильность выполнения теста
Разделы 1-3	ОПК-2	Лабораторные работы	Правильность выполнения задания и аргументированность ответов
Разделы 1-3	ОПК-2	Расчетно- графическая работа	Полнота и правильность выполнения работы

2 Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующие процесс формирования компетенций

Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности, представлены в виде технологической карты дисциплины (таблица 3).

Таблица 3 – Технологическая карта

	Наименование	Сроки	Шкала	Критерии
	оценочного	выполнения	оценивания	оценивания
	средства			

	7 семестр Промежуточная аттестация в форме «Зачет с оценкой»					
1	Тест	в течение семестра	20 баллов	20 баллов — 91-100 % правильных ответов — высокий уровень знаний; 15 баллов — 71-90 % правильных ответов — достаточно высокий уровень знаний; 10 баллов — 61-70 % правильных ответов — средний уровень знаний; 5 баллов — 51-60 % правильных ответов — низкий уровень знаний; 0 баллов — 0-50 % правильных ответов — очень низкий уровень знаний.		
2	Лабораторная работа 1	в течение семестра	5 баллов	5 баллов – студент показал отличные навыки применения полученных знаний		
3	Лабораторная работа 2	в течение семестра	5 баллов	и умений при решении профессиональных задач в рамках усвоенного учебного материала.		
4	Лабораторная работа 3	в течение семестра	5 баллов	4 балла – студент показал хорошие навыки применения полученных знаний		
5	Лабораторная работа 4	в течение семестра	5 баллов	и умений при решении профессиональных задач в рамках усвоенного учебно-		
6	Лабораторная работа 5	в течение семестра	5 баллов	го материала. 3 балла – студент показал удовле-		
7	Лабораторная работа 6	в течение семестра	5 баллов	творительное владение навыками применения полученных знаний и умений при решении профессиональных задач в		
8	Лабораторная работа 7	в течение семестра	5 баллов	рамках усвоенного учебного материала. 0 баллов – студент продемонстрировал		
9	Лабораторная работа 8	в течение семестра	5 баллов	недостаточный уровень владения умениями и навыками при решении про-		
10	Лабораторная работа 9	в течение семестра	5 баллов	фессиональных задач в рамках усвоенного учебного материала.		
11	Лабораторная работа 10	в течение семестра	5 баллов			
12	Лабораторная работа 11	в течение семестра	5 баллов			
13	Лабораторная работа 12	в течение семестра	5 баллов			
14	Расчетно- графическая ра- бота	в течение семестра	20 баллов	20 баллов — студент показал отличные навыки применения полученных знаний и умений при решении профессиональных задач в рамках усвоенного учебного мате-		

			риала. 15 баллов — студент показал хорошие навыки применения полученных знаний и умений при решении профессиональных задач в рамках усвоенного учебного материала. 10 баллов — студент показал удовлетворительное владение навыками применения полученных знаний и умений при решении профессиональных задач в рамках усвоенного учебного материала. 0 баллов — студент продемонстрировал недостаточный уровень владения умениями и навыками при решении профессиональных задач в рамках усвоенного учебного материала.
ИТОГО:	-	100 баллов	-

Критерии оценки результатов обучения по дисциплине:

- 0-64~% от максимально возможной суммы баллов «неудовлетворительно» (недостаточный уровень для промежуточной аттестации по дисциплине); 65-74~% от максимально возможной суммы баллов «удовлетворительно» (пороговый (минимальный)
- 75-84 % от максимально возможной суммы баллов «хорошо» (средний уровень); 85-100 % от максимально возможной суммы баллов «отлично» (высокий (максимальный) уровень)

Задания для текущего контроля

Лабораторная работа 1. Знакомство со средой LabVIEW.

Создать простой виртуальный инструмент (VI), конвертирующий температуру из шкалы Фаренгейта в шкалу Цельсия.

Лабораторная работа 2. Создание спектрального анализатора прямоугольного импульса.

В среде *LabVIEW* создать спектральный анализатор прямоугольного импульса.

Лабораторная работа 3. Знакомство с программой RADAR Signal Simulator с устройством NI USRP-2953R.

Изучить основные компоненты устройства NI USRP-2953R, произвести его подключение к ПК и настройку.

Лабораторная работа 4. Цифровое устройство обнаружение пачки когерентных импульсов на фоне пассивных помех

Характеристики пассивных помех и принципы селекции движущихся целей на фоне этих помех. Изучение структурной схемы когерентно-импульсной РЛС.

Лабораторная работа 5. Устройство формирования и согласованной фильтрации импульсного сигнала с линейной частотной модуляцией.

Исследовать основные характеристики ЛЧМ сигнала (вид сигнала, амплитудный спектр сигнала, закон изменения частоты и фазы в сигнале). Исследовать основные характеристики согласованного фильтра — амплитудно-частотная и импульсная характеристики. Определить коэффициент сжатия при различной длительности ЛЧМ сигнала. Вид выходного сжатого сигнала на промежуточной частоте и на видеочастоте. Определить влияние возможного рассогласования по частоте Доплера (между сигналом и фильтром) на вид выходного сжатого сигнала на промежуточной частоте и на видеочастоте.

Лабораторная работа 6. Подключение устройства MyRIO. Подключение компаса на устройстве NI myRIO.

Изучить автоматический радиокомпас с использованием оборудования NI myRIO и датчика Compass.

Лабораторная работа 7. Построение специализированного процессора цифровой обработки некогерентной пачки радиоимпульсов обзорной РЛС

Изучить принципы построения специализированного процессора цифровой обработки пачки некогерентных радиоимпульсов обзорной РЛС. Измерить технические характеристики и провести экспериментальное исследование характеристик обнаружителя цифрового процессора.

Лабораторная работа 8. Подключение ультразвукового дальномера на устройстве NI myRIO.

Подключить ультразвуковой дальномер к устройству NI myRIO и провести исследование датчика.

Лабораторная работа 9. Подключение трехосного акселерометра на устройстве NI myRIO.

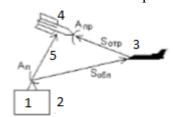
Установить и сконфигурировать устройство для работы с компьютером, используя среду LabVIEW. Создать проект и разработать код виртуального устройства на основе встроенного трехосного акселерометра.

Лабораторная работа 10. Подключение трехосного цифрового гироскопа на устройстве NI туRIO.

Подключить трехосный цифрового гироскоп к устройству NI myRIO и провести исследование датчика.

Лабораторная работа 11. Разработать компас с поправкой на наклон.

Создать поправку на наклон компаса с использованием акселерометра для определения угла к поверхности земли.


Лабораторная работа 12. Подключение инфракрасного дистанционного датчика на устройстве NI myRIO.

Подключить инфракрасный дистанционный датчик к устройству NI myRIO и провести исследование датчика.

TECT

- 1. Радиотехническая система (РТС) это
- а) совокупность средств и приборов, соединенных между собой и предназначенных для целенаправленного выполнения единой задачи или ряда задач, связанных с передачей, извлечением и преобразованием информации;
- б) совокупность оборудования, предназначенных для выполнения задач по приему, сбору и преобразованию информации;
- в) совокупность приборов и датчиков, соединенных между собой для обнаружения сигналов и целесообразного выполнения единой задачи или ряда задач по поиску информации.
- 2. Отметьте, что не относиться к основным электрическим параметрам радиосигналов
 - а) период;
 - б) амплитуда;
 - в) фаза;
 - г) частота.
- 3. Устройство, преобразующее информационное сообщение в радиосигнал
 - а) приемное;
 - б) передающее;
 - в) преобразующее.

- 4. Совокупность аппаратных средств и физической среды, в которой распространяются электромагнитные волны от передатчика к приемнику это...
 - а) канал связи;
 - б) линия пропускания;
 - в) линия связи.
- 5. Функции пилотажно-навигационного комплекса
 - а) управление движением летательных аппаратов;
 - б) управление приборами и датчиками летательных аппаратов;
 - в) движение летальных аппаратов.
- 6. Радиосигналы в однородной среде распространяются ...
 - а) обратно пропорционально;
 - б) прямолинейно;
 - в) рассредоточено.
- 7. Отметьте метод, не относящийся к измерению навигационных параметров
 - а) измерение расстояния;
 - б) измерение локального минимума;
 - в) измерения скорости движения объектов;
 - г) измерение угловых координат.
- 8. Что включает в себя активная РТС
 - а) передатчик, приемник;
 - б) антенна, компас;
 - в) приемник, сигнал.
- 9. Укажите соответствие отраженных на рисунке обозначений

- 1) а) передатчик;
- б) ракета;
- 3) в) опорный сигнал;
- 4) г) командный пункт;
- 5) д) цель.
- 10. Напишите название структурной схемы, представленной на рисунке

Расчетно-графическая работа

Моделирование и исследование радиоэлектронного оборудования системы навигации летательного аппарата из имеющихся наборов датчиков.