
Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования «Комсомольский-на-Амуре государственный университет»

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ «Механика жидкости и газа»

Специальность	08.05.01 Строительство уникальных зданий и сооружений
Специализация	Строительство высотных и большепролетных зданий и сооружений
Квалификация выпускника	Инженер-строитель
Год начала подготовки (по учебному плану)	2019
Форма обучения	Очная
Технология обучения	Традиционная

Курс	Семестр	Трудоемкость, з.е.
3	5	3

Вид промежуточной аттестации	Обеспечивающее подразделение
Зачет	Кафедра «СиА»

Разработчик рабочей программы:

Доцент кафедры «Системы автоматизированного проектирования», кандидат технических наук, доцент

(должность, степень, ученое звание)

(подпись)

Ю.Н.Чудинов (ФИО)

СОГЛАСОВАНО:

Руководитель образовательной программы «Строительство уникальных зданий и сооружений»

Заведующий выпускающей кафедрой «Строительство и архитектура»

(подпись)

Ю.Н.Чудинов (ФИО)

(подпись)

О.Е. Сысоев

1 Введение

Рабочая программа и фонд оценочных средств дисциплины «Механика жидкости и газа» составлены в соответствии с требованиями федерального государственного образовательного стандарта, утвержденного приказом Минобрнауки Российской Федерации №483 31.05.2017, и основной профессиональной образовательной программы подготовки «Строительство высотных и большепролетных зданий и сооружений» по специальности «08.05.01 Строительство уникальных зданий и сооружений».

Задачи дисци-плины	1. Познакомить обучающихся с теоретическими и экспериментальными исследованиями в области механики жидкостей и газов в целях изыскания принципов и путей совершенствования существующих объектов профессиональной деятельности, обоснования их технических характеристик, определения условий применения. 2. Дать информацию о составлении уравнений расчета в дифференциальной и интегральной форме и записи граничных условий для задач динамики жидкости.
Основные разделы / темы дисциплины	 Основные понятия и уравнения равновесия; Одномерные и плоские течения жидкости; Циркуляция скорости. Вязкость жидкости; Решение задач с помощью уравнений Бернулли, Навье-Стокса

2 Перечень планируемых результатов обучения по дисциплине (модулю), соотнесенных с индикаторами достижения компетенций

Процесс изучения дисциплины «Механика жидкости и газа» направлен на формирование следующих компетенций в соответствии с ФГОС ВО и основной образовательной программой (таблица 1):

Таблица 1 – Компетенции и индикаторы их достижения

Код и наименование компетенции	Индикаторы достижения	Планируемые результаты обучения по дисциплине	
Общепрофессиональные			
ОПК-1 Способен решать прикладные задачи строительной отрасли, используя теорию и методы фундаментальных наук	ОПК-1.1 Знает теорию и основные законы в области естественнонаучных и общеинженерных дисциплин ОПК-1.2 Умеет выявлять и классифицировать физические и химические процессы, протекающие на объекте профессиональной деятельности, решать инженерные задачи с помощью математического аппарата ОПК-1.3 Владеет навыками	Знать: основные задачи, методы и уравнения механики жидкости и газа; основные алгоритмы решения типовых задач механики жидкости и газа. Уметь: применять полученные знания к решению конкретных технических задач; использовать теорию подобия и размерностей для моделирования гидрогазодинамических процессов. Владеть: навыками построения физико-механических и матема-	

решения типовых инженер-
ных задач на основе теорети-
ческих исследований, обра-
ботки расчетных и экспери-
ментальных данных вероят-
ностно-статистическими ме-
тодами

тических моделей; навыками решения задач механики жидкости и газа; методами применения экспериментального подхода к решению технических задач.

3 Место дисциплины (модуля) в структуре образовательной программы

Дисциплина «Механика жидкости и газа» изучается на 3 курсе, 5 семестре.

Дисциплина входит в состав блока 1 «Дисциплины (модули)» и относится к базовой части.

Для освоения дисциплины необходимы знания, умения, навыки и / или опыт практической деятельности, сформированные в процессе изучения дисциплин / практик: «Химия», «Информационные технологии», «Начертательная геометрия и инженерная графика в САD-системах», «Математика», «Химия в строительстве», «Инженерная графика в строительстве», «Информационные технологии в строительстве», «Физика», «Теория вероятностей и математическая статистика», «Теоретическая механика», «Сопротивление материалов».

Знания, умения и навыки, сформированные при изучении дисциплины «Механика жидкости и газа», будут востребованы при изучении последующих дисциплин: «Вероятностные методы строительной механики и теория надежности строительных конструкций», «Теория расчета пластин и оболочек», «Расчёт строительных конструкций методом конечных элементов», «Инженерно-геодезическое обеспечение строительства», «Нелинейные задачи строительной механики», «Динамика и устойчивость сооружений».

Дисциплина «Механика жидкости и газа» в рамках воспитательной работы направлена на формирование у обучающихся творчески развитой личности, системы осознанных знаний, ответственности за выполнение учебно-производственных заданий и т.д.

4 Объем дисциплины (модуля) в зачетных единицах с указанием количества академических часов, выделенных на контактную работу обучающихся с преподавателем (по видам учебных занятий) и на самостоятельную работу обучающихся

Общая трудоемкость (объем) дисциплины составляет 3 з.е., 108 акад. час.

Распределение объема дисциплины (модуля) по видам учебных занятий представлено в таблице 2.

Таблица 2 – Объем дисциплины (модуля) по видам учебных занятий

Объем дисциплины	Всего академических часов
Общая трудоемкость дисциплины	108
Контактная аудиторная работа обучающихся с преподавателем (по видам учебных занятий), всего	32
В том числе:	
занятия лекционного типа (лекции и иные учебные занятия, предусматривающие преимущественную передачу учебной информации пе-	16

дагогическими работниками)	
занятия семинарского типа (семинары, практические занятия, практикумы, лабораторные работы, коллоквиумы и иные аналогичные занятия)	16
Самостоятельная работа обучающихся и контактная работа, включающая групповые консультации, индивидуальную работу обучающихся с преподавателями (в том числе индивидуальные консультации); взаимодействие в электронной информационно-образовательной среде вуза	76
Промежуточная аттестация обучающихся – Зачёт	0

5 Содержание дисциплины (модуля), структурированное по темам (разделам) с указанием отведенного на них количества академических часов и видов учебной работы

Таблица 3 – Структура и содержание дисциплины (модуля)

Виды учебной работы, вклю ятельную работу обучающи		нающихся и		
Наименование разделов, тем и содержание ма-	емкость (в часах) Контактная работа преподава- теля с обучающимися		CPC	
териала	Лекции	Семинар- ские (практи-	Лабора- торные занятия	
		ческие занятия)	занятия	
1 Основные понятия и уравнения равновесия Основные понятия и определения курса МЖГ. Решение задач по физическим свойствам жидкости. Классификация сил, действующих в жидкости. Параметры потока. Определения вязкости жидкости при помощи вискозиметра Энглера. Решение задач по определению давления в покоящейся жидкости. Методы изучения движения жидкости.	4			15
2. Одномерные и плоские течения жидкости Истечение жидкости из отверстия в тонкой стенке. Деформационное движение жидкого элемента. Решение задач по определению сил давления жидкости на плоские поверхности. Вращательное движение жидкого элемента. Построение свободной поверхности жидкости во вращающемся сосуде. Линии и трубки тока. Вихревые линии и трубки. Решение задач по определению сил давления жидкости на плоские поверхности. Линии и трубки тока. Вихревые линии и трубки. Определение силы давления клапан.	4			15

	Виды учебной работы, включая самостоятельную работу обучающихся и трудоемкость (в часах)			
	Контакти	ная работа пр		CPC
Наименование разделов, тем и содержание ма-		с обучающи		
териала	Лекции	Семинар-	Лабора-	
1	,	ские	торные	
		(практи-	занятия	
		ческие		
		занятия)		
3 Циркуляция скорости. Вязкость жидкости		,		
Циркуляция скорости. Вязкость жидкости.				
Решение задач по определению сил давления				
жидкости на криволинейные поверхности.				
Циркуляция скорости. Вязкость жидкости.				
Изучение режимов движения жидкости в	4			15
круглой трубе Уравнение неразрывности. Ре-				
шение задач по определению сил давления				
жидкости на криволинейные поверхности.				
Уравнения состояния.				
4. Решение задач с помощью уравнений				
Бернулли, Навье-Стокса				
Уравнения Бернулли. Уравнения движения				
идеальной жидкости. Уравнения движения				
идеальной несжимаемой жидкости в форме				
Громеко. Интегралы дифференциальных урав-				
нений движения идеальной жидкости. Урав-				
нение энергии. Решение задач с использовани-	4			15
нение энергии. Гешение задач с использовани-				
ем уравнения Бернулли для идеальной жидкости. Уравнения Навье-Стокса. Основы теории				
_				
пограничного слоя, его количественные харак-				
теристики. Понятие о дивергенции вектора				
скорости. Решение задач с использованием				
уравнения Бернулли для реальной жидкости.				
5 Лабораторная работа «Сила подъема клапа-			2	2
на»			_	2
6 Лабораторная работа «Несовершенное сжа-				
тие струи»			2	2
7 Поборожного добожно и Иминический околоски				
7 Лабораторная работа «Циркуляция скорости			2	2
и вязкость жидкости»			_	_
8 Лабораторная работа «Турбулентный и ла-				
минарный потоки»			2	2
9Лабораторная работа «Работа сифона»				
улаоораторная раоота «гаоота сифона»			2	2
10 Лабораторная работа «Вяскозиметр Энгле-			2	
pa»			2	2
11 Лабораторная работа «Уравнение Бернул-				
ли»			4	4

	_	бной работы			
	ятельную	ятельную работу обучающихся и трудо-			
	емкость (в часах)				
	Контакти	ная работа пр	еподава-	CPC	
Наименование разделов, тем и содержание ма-	теля	с обучающи	мися		
териала	Лекции	Семинар-	Лабора-		
		ские	торные		
		(практи-	занятия		
		ческие			
		занятия)			
ИТОГО	4.6		4.6		
по дисциплине	16		16	76	

6 Внеаудиторная самостоятельная работа обучающихся по дисциплине (модулю)

При планировании самостоятельной работы студенту рекомендуется руководствоваться следующим распределением часов на самостоятельную работу (таблица 4):

Таблица 4 – Рекомендуемое распределение часов на самостоятельную работу

Компоненты самостоятельной работы	Количество часов
Изучение теоретических разделов дисциплины	24
Подготовка к занятиям семинарского типа	16
Подготовка и оформление РГР	44
ИТОГО	76

7 Оценочные средства для проведения текущего контроля и промежуточной аттестации обучающихся по дисциплине (модулю)

Фонд оценочных средств для проведения текущего контроля успеваемости и промежуточной аттестации представлен в Приложении 1.

Полный комплект контрольных заданий или иных материалов, необходимых для оценивания результатов обучения по дисциплине (модулю), практике хранится на кафедре-разработчике в бумажном и электронном виде.

8 Учебно-методическое и информационное обеспечение дисциплины (модуля)

8.1 Основная литература

- 1 Лойцянский, Л.Г. Механика жидкости и газа: Учебник для вузов / Л. Г. Лойцянский. 7-е изд., испр. М.: Дрофа, 2003; Наука: 1987. 840с.: ил.
- 2 Гидравлика: Учебник: в 2 т. Т.1: Основы механики жидкостей и газов / В. И. Иванов, И. И. Сазанов, А. Г. Схиртладзе, Г. О. Трифонова. М.: Академия, 2012. 190с.

8.2 Дополнительная литература

- 1 Механика сплошных сред: Учебное пособие для вузов / Сост. Б.Н.Марьин, С.И.Феоктистов, О.А.Грачева. Комсомольск-на-Амуре: Изд-во Комсомольского-на-Амуре гос.техн.ун-та, 2011. 194с.: ил.
- 2 Черняк, В.Г. Механика сплошных сред: Учебное пособие для вузов / В. Г. Черняк, П. Е. Суетин. М.: Физматлит, 2006. 352с.: ил.
 - 8.3 Современные профессиональные базы данных и информационные справочные системы, используемые при осуществлении образовательного процесса по дисциплине
- 1. Электронная библиотека www.znanium.com.
- 2. Электронный портал научной литературы www.elibrary.ru.
 - 8.4 Перечень ресурсов информационно-телекоммуникационной сети «Интернет», необходимых для освоения дисциплины (модуля)
- 1. Национальная платформа открытого образования. https://openedu.ru/
- 2. Электронный учебный курс для студентов очной и заочной форм обучения http://www.prikladmeh.ru/

8.5 Лицензионное и свободно распространяемое программное обеспечение, используемое при осуществлении образовательного процесса по лиспиплине

Таблица 7 – Перечень используемого программного обеспечения

Наименование ПО	Реквизиты / условия использования
Microsoft Imagine Premium	Лицензионный договор АЭ223 №008/65 от 11.01.2019
OpenOffice	Свободная лицензия, условия использования по ссылке: https://www.openoffice.org/license.html
MathcadEducation	Договор № 106-АЭ120 от 27.11.2012

9 Организационно-педагогические условия

Организация образовательного процесса регламентируется учебным планом и расписанием учебных занятий. Язык обучения (преподавания) - русский. Для всех видов аудиторных занятий академический час устанавливается продолжительностью 45 минут.

При формировании своей индивидуальной образовательной траектории обучающийся имеет право на перезачет соответствующих дисциплин и профессиональных модулей, освоенных в процессе предшествующего обучения, который освобождает обучающегося от необходимости их повторного освоения.

9.1 Образовательные технологии

Учебный процесс при преподавании курса основывается на использовании традиционных, инновационных и информационных образовательных технологий. Традиционные образовательные технологии представлены лекциями и семинарскими (практическими) занятиями. Инновационные образовательные технологии используются в виде широкого применения активных и интерактивных форм проведения занятий. Информационные образовательные технологии реализуются путем активизации самостоятельной работы студентов в информационной образовательной среде.

9.2 Занятия лекционного типа

Лекционный курс предполагает систематизированное изложение основных вопросов учебного плана.

На первой лекции лектор обязан предупредить студентов, применительно к какому базовому учебнику (учебникам, учебным пособиям) будет прочитан курс.

Лекционный курс должен давать наибольший объем информации и обеспечивать более глубокое понимание учебных вопросов при значительно меньшей затрате времени, чем это требуется большинству студентов на самостоятельное изучение материала.

9.3 Занятия семинарского типа

Семинарские занятия представляют собой детализацию лекционного теоретического материала, проводятся в целях закрепления курса и охватывают все основные разделы.

Основной формой проведения семинаров является обсуждение наиболее проблемных и сложных вопросов по отдельным темам, а также разбор примеров и ситуаций в аудиторных условиях. В обязанности преподавателя входят: оказание методической помощи и консультирование студентов по соответствующим темам курса.

Активность на семинарских занятиях оценивается по следующим критериям:

- ответы на вопросы, предлагаемые преподавателем;
- участие в дискуссиях;
- выполнение проектных и иных заданий;
- ассистирование преподавателю в проведении занятий.

Ответ должен быть аргументированным, развернутым, не односложным, содержать ссылки на источники.

Доклады и оппонирование докладов проверяют степень владения теоретическим материалом, а также корректность и строгость рассуждений.

Оценивание заданий, выполненных на семинарском занятии, входит в накопленную оценку.

9.4 Самостоятельная работа обучающихся по дисциплине (модулю)

Самостоятельная работа студентов — это процесс активного, целенаправленного приобретения студентом новых знаний, умений без непосредственного участия преподавателя, характеризующийся предметной направленностью, эффективным контролем и оценкой результатов деятельности обучающегося.

Цели самостоятельной работы:

- систематизация и закрепление полученных теоретических знаний и практических умений студентов;
 - углубление и расширение теоретических знаний;

- формирование умений использовать нормативную и справочную документацию, специальную литературу;
- развитие познавательных способностей, активности студентов, ответственности и организованности;
- формирование самостоятельности мышления, творческой инициативы, способностей к саморазвитию, самосовершенствованию и самореализации;
 - развитие исследовательских умений и академических навыков.

Самостоятельная работа может осуществляться индивидуально или группами студентов в зависимости от цели, объема, уровня сложности, конкретной тематики.

Технология организации самостоятельной работы студентов включает использование информационных и материально-технических ресурсов университета.

Контроль результатов внеаудиторной самостоятельной работы студентов может проходить в письменной, устной или смешанной форме.

Студенты должны подходить к самостоятельной работе как к наиважнейшему средству закрепления и развития теоретических знаний, выработке единства взглядов на отдельные вопросы курса, приобретения определенных навыков и использования профессиональной литературы.

9.5 Методические указания для обучающихся по освоению дисциплины

При изучении дисциплины обучающимся целесообразно выполнять следующие рекомендации:

- 1. Изучение учебной дисциплины должно вестись систематически.
- 2. После изучения какого-либо раздела по учебнику или конспектным материалам рекомендуется по памяти воспроизвести основные термины, определения, понятия раздела.
- 3. Особое внимание следует уделить выполнению отчетов по практическим занятиям и индивидуальным комплексным заданиям на самостоятельную работу.
- 4. Вся тематика вопросов, изучаемых самостоятельно, задается на лекциях преподавателем. Им же даются источники (в первую очередь вновь изданные в периодической научной литературе) для более детального понимания вопросов, озвученных на лекции.

При самостоятельной проработке курса обучающиеся должны:

- просматривать основные определения и факты;
- повторить законспектированный на лекционном занятии материал и дополнить его с учетом рекомендованной по данной теме литературы;
- изучить рекомендованную литературу, составлять тезисы, аннотации и конспекты наиболее важных моментов;
 - самостоятельно выполнять задания, аналогичные предлагаемым на занятиях;
 - использовать для самопроверки материалы фонда оценочных средств.

10 Описание материально-технического обеспечения, необходимого для осуществления образовательного процесса по дисциплине (модулю)

10.1 Учебно-лабораторное оборудование

Отсутствует

10.2 Технические и электронные средства обучения

При проведении занятий используется аудитория, оборудованная проектором (стационарным или переносным) для отображения презентаций. Кроме того, при проведении

лекций и практических занятий необходим компьютер с установленным на нем браузером и программным обеспечением для демонстрации презентаций.

Для реализации дисциплины подготовлены следующие презентации:

- 1. Основные понятия и уравнения равновесия;
- 2. Одномерные и плоские течения жидкости;
- 3. Циркуляция скорости. Вязкость жидкости;
- 4. Решение задач с помощью уравнений Бернулли, Навье-Стокса.

11 Иные сведения

Методические рекомендации по обучению лиц с ограниченными возможностями здоровья и инвалидов

Освоение дисциплины обучающимися с ограниченными возможностями здоровья может быть организовано как совместно с другими обучающимися, так и в отдельных группах. Предполагаются специальные условия для получения образования обучающимися с ограниченными возможностями здоровья.

Профессорско-педагогический состав знакомится с психолого-физиологическими особенностями обучающихся инвалидов и лиц с ограниченными возможностями здоровья, индивидуальными программами реабилитации инвалидов (при наличии). При необходимости осуществляется дополнительная поддержка преподавания тьюторами, психологами, социальными работниками, прошедшими подготовку ассистентами.

В соответствии с методическими рекомендациями Минобрнауки РФ (утв. 8 апреля 2014 г. N АК-44/05вн) в курсе предполагается использовать социально-активные и рефлексивные методы обучения, технологии социокультурной реабилитации с целью оказания помощи в установлении полноценных межличностных отношений с другими студентами, создании комфортного психологического климата в студенческой группе. Подбор и разработка учебных материалов производятся с учетом предоставления материала в различных формах: аудиальной, визуальной, с использованием специальных технических средств и информационных систем.

Освоение дисциплины лицами с OB3 осуществляется с использованием средств обучения общего и специального назначения (персонального и коллективного использования). Материально-техническое обеспечение предусматривает приспособление аудиторий к нуждам лиц с OB3.

Форма проведения аттестации для студентов-инвалидов устанавливается с учетом индивидуальных психофизических особенностей. Для студентов с ОВЗ предусматривается доступная форма предоставления заданий оценочных средств, а именно:

- в печатной или электронной форме (для лиц с нарушениями опорнодвигательного аппарата);
- в печатной форме или электронной форме с увеличенным шрифтом и контрастностью (для лиц с нарушениями слуха, речи, зрения);
 - методом чтения ассистентом задания вслух (для лиц с нарушениями зрения).

Студентам с инвалидностью увеличивается время на подготовку ответов на контрольные вопросы. Для таких студентов предусматривается доступная форма предоставления ответов на задания, а именно:

- письменно на бумаге или набором ответов на компьютере (для лиц с нарушениями слуха, речи);
- выбором ответа из возможных вариантов с использованием услуг ассистента (для лиц с нарушениями опорно-двигательного аппарата);
 - устно (для лиц с нарушениями зрения, опорно-двигательного аппарата).

При необходимости для обучающихся с инвалидностью процедура оценивания результатов обучения может проводиться в несколько этапов.

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

по дисциплине

«Механика жидкости и газа»

Специальность	08.05.01 Строительство уникальных зданий и сооружений
Специализация	Строительство высотных и большепролетных зданий и сооружений
Квалификация выпускника	Инженер
Год начала подготовки (по учебному плану)	2019
Форма обучения	Очная форма
Технология обучения	Традиционная

Курс	Семестр	Трудоемкость, з.е.
3	5	3

Вид промежуточной аттестации	Обеспечивающее подразделение
Зачёт	Кафедра «Авиастроение»

1 Перечень планируемых результатов обучения по дисциплине (модулю), соотнесенных с индикаторами достижения компетенций

Таблица 1 – Компетенции и индикаторы их достижения

Код и наименование компетенции	Индикаторы достижения	Планируемые результаты обучения по дисциплине
	Общепрофессиональны	ale
ОПК-1 Способен решать прикладные задачи строительной отрасли, используя теорию и методы фундаментальных наук	ОПК-1.1 Знает теорию и основные законы в области естественнонаучных и общеинженерных дисциплин ОПК-1.2 Умеет выявлять и классифицировать физические и химические процессы, протекающие на объекте профессиональной деятельности, решать инженерные задачи с помощью математического аппарата ОПК-1.3 Владеет навыками решения типовых инженерных задач на основе теоретических исследований, обработки расчетных и экспериментальных данных вероятностно-статистическими методами	Знать: основные задачи, методы и уравнения механики жидкости и газа; основные алгоритмы решения типовых задач механики жидкости и газа. Уметь: применять полученные знания к решению конкретных технических задач; использовать теорию подобия и размерностей для моделирования гидрогазодинамических процессов. Владеть: навыками построения физико-механических и математических моделей; навыками решения задач механики жидкости и газа; методами применения экспериментального подхода к решению технических задач.

Таблица 2 – Паспорт фонда оценочных средств

Контролируемые	Формируемая	Наименование	П
разделы (темы)	компетенция	оценочного	Показатели оценки
дисциплины		средства	
1. Основные понятия и			Владеет основными понятия-
уравнения равновесия.			ми и определениями курса
2. Одномерные и плос-			МЖГ. Классифицирует силы,
кие течения жидкости.			действующие в жидкости.
3. Циркуляция скоро-			Владеет принципами решение
сти. Вязкость жидко-			задач по определению давле-
сти.	ОПК- 1	РГР	ния в покоящейся жидкости.
4. Решение задач с по-	Offic-1	111	Владеет принципами решения
мощью уравнений			задач по определению сил
Бернулли, Навье-			давления жидкости на плос-
Стокса.			кие поверхности. Владеет
			принципами определения си-
			ловых и кинематических фак-
			торов.

2 Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующие процесс формирования компетенций

Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности, представлены в виде технологической карты дисциплины (таблица 3).

Таблица 3 – Технологическая карта

1 aOJII	ица 3 — Гехнологич Наименование	-				
	паименование оценочного средства	Сроки выполнения	Шкала оценивания	Критерии оценивания		
	5 семестр					
	Промежуточная аттестация в форме «Зачет»					
	РГР	14 неделя	10 баллов	10 баллов - Студент полно-		
				стью выполнил задание, пока-		
				зал отличные умения и навыки		
				в рамках усвоенного учебного		
				материала, контрольная рабо-		
				та оформлена аккуратно и в		
				соответствии с предъявляе-		
				мыми требованиями.		
				8 баллов - Студент полностью		
				выполнил задание, показал хо-		
				рошие умения навыки в рамках		
				усвоенного учебного материа-		
				ла, но не смог обосновать оп-		
				тимальность предложенного		
				решения, допущены одна или		
				две неточности, есть недо-		
				статки в оформлении.		
				5 баллов - Студент полностью		
				выполнил задание, но допустил		
				существенные неточности и		
				грубые ошибки, не проявил уме-		
				ния правильно интерпретиро-		
				вать полученные результаты,		
				качество оформления имеет		
				недостаточный уровень.		
				0 баллов - Студент не полно-		
				стью выполнил задание, при		
				этом проявил недостаточный		
				уровень умений и навыков, а		
				также неспособен пояснить		
	Omyramy II-	D marray	10	полученный результат.		
	Отчеты по Ла- бораторным	В течении се-	10	10 баллов - Студент полно-		
	работам	местра		стью выполнил и защитил за-		
	Paccian			дание, показал отличные уме-		
				ния и навыки в рамках усвоен-		
				ного учебного материала, кон-		
				трольная работа оформлена		
				аккуратно и в соответствии с		
				предъявляемыми требования-		

ми. 8 баллов - Студент полностью выполнил и защитил задание, показал хорошие умения навыки в рамках усвоенного учебного материала, но не смог обосновать оптимальность предложенного решения, допущены одна или две неточности, есть недостатки в оформлении. 5 баллов - Студент полностью выполнил и защитил задание, но допустил существенные неточности и грубые ошибки, не проявил умения правильно интерпретировать полученные результаты, качество оформления имеет недостаточный уровень. 0 баллов - Студент не полностью выполнил задание, при этом проявил недостаточный уровень умений и навыков, а также неспособен пояснить полученный результат.	Наименование оценочного средства	Сроки выполнения	Шкала оценивания	Критерии оценивания
ИТОГО: - 20 баллов -				8 баллов - Студент полностью выполнил и защитил задание, показал хорошие умения навыки в рамках усвоенного учебного материала, но не смог обосновать оптимальность предложенного решения, допущены одна или две неточности, есть недостатки в оформлении. 5 баллов - Студент полностью выполнил и защитил задание, но допустил существенные неточности и грубые ошибки, не проявил умения правильно интерпретировать полученные результаты, качество оформления имеет недостаточный уровень. О баллов - Студент не полностью выполнил задание, при этом проявил недостаточный уровень умений и навыков, а также неспособен пояснить
Критерии опенки результатов обучения по лиспиплине		-		-

Критерии оценки результатов обучения по дисциплине: Пороговый (минимальный) уровень для аттестации в форме зачета — 75 % от максимально возможной суммы баллов

3. Типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующие процесс формирования компетенций в ходе освоения образовательной программы

3.1 Задания для текущего контроля успеваемости

Расчетно-графическая работа

Расчет напряженно-деформированного состояния пластины, лежащей на слое жидкости, от действия движущейся нагрузки в зависимости от толщины льда. (Расчетная схема и пример решения приведены в приложении 1).

Вариант 1	Вариант 2	Вариант 3	Вариант 4	Вариант 5	Вариант 6
P=4*10^5	P=5*10^5	P=6*10^5	P=7*10^5	P=8*10^5	P=9*10^5
a=10	a=12	a=11	a=8	a=9	a=12
pb=5	bb=4	9=qq	L=qq	pp=5	9=qq
q=P/(4*a*b)	q=P/(4*a*b)	q=P/(4*a*b)	q=P/(4*a*b)	q=P/(4*a*b)	q=P/(4*a*b)
G=2*10^9	G=1*10^9	G=3*10^9	G=2*10^9	G=1*10^9	G=3*10^9
H=5	H=4	E=H	H=5	H=4	H=3
σn=1.2*10^6	on=1.5*10^6	σn=1.6*10^6	σn=1.3*10^6	on=1.4*10^6	on=1.1*10^6
pv=1000	pv=1500	pv=1100	pv=1200	pv=1100	pv=1300
pl=920	pl=820	pl=720	pl=920	pl=820	pl=720
g=9.807	g=9.807	g=9.807	g=9.807	g=9.807	g=9.807
tf=1.51.8	τ f=1.02.0	τf=1.01.5	tf=1.52.0	tf=1.01.8	tf=1.21.6
μ=0.33	μ=0.33	μ=0.33	μ=0.33	μ=0.33	μ=0.33
$\chi=1$	χ =1	χ =1	χ =2	χ =1	χ =2
v = 6.9	V= 7	v= 7.1	v= 7.2	v= 6.8	v= 7.2
h=0.5	h=0.6	h=0.55	h=0.45	h=0.55	h=0.6

Вопросы к защите лабораторных работ

1. Лабораторная работа «Сила подъема клапана»

- 1. Поверхностные и массовые силы.
- 2. Уравнения движения сплошной среды в напряжениях
- 3. Условие подъема клапана
- 4. Принцип действия клапана непрямого клапана
- 5. Принцип действия клапана редукционного клапана

2. Лабораторная работа «Несовершенное сжатие струи»

- 1. Понятие и важнейшие свойства функции тока.
- 2. Связь между потенциалом течения и его функцией тока.
- 3. Понятие и важнейшие свойства потенциала скорости.
- 4. Дивергенция скорости. Физический смысл дивергенции скорости.
- 5. Поверхностные и массовые силы.

3. Лабораторная работа «Циркуляция скорости и вязкость жидкости»

- 1. Понятие сплошной среды.
- 2. Модели идеальной и вязкой жидкости
- 3. Примеры полей скоростей
- 4. Поток вектора скорости через поверхность.
- 5. Понятие и физический смысл циркуляции скорости.

4. Лабораторная работа «Турбулентный и ламинарный потоки»

- 1. Линия тока. Траектория.
- 2. Что такое ламинарный поток?
- 3. Что такое турбулентный поток?
- 4. В чем разница между ламинарным и турбулентным потоками?
- 5. Что такое число Рейнольдса.

5. Лабораторная работа «Работа сифона»

- 1. Характеристика режимов течения жидкости.
- 2. Закон сохранения массы в интегральной и дифференциальной форме.
- 3. Принцип работы сифона.
- 4. Устройство сифона.
- 5. Закон сохранения энергии в интегральной и дифференциальной форме.

6. Лабораторная работа «Вяскозиметр Энглера»

- 1. Принцип действия вискозиметра Энглера.
- 2. Устройство вискозиметра Энглера
- 3. Течение вязкой жидкости при больших числах Рейнольдса.
- 4. Течение вязкой жидкости при малых числах Рейнольдса.
- 5. Подобие течений вязкой жидкости.

7. Лабораторная работа «Уравнение Бернулли»

- 1. Главный вектор и главный момент сил давления на твердую поверхность.
- 2. Система уравнений течения идеальной нетеплопроводной жидкости.
- 3. Уравнение Бернулли.
- 4. Закон сохранения энергии идеальной жидкости.
- 5. Уравнение Бернулли для потока идеальной жидкости.

Пример выполнения расчетно-графической работы

РАСЧЕТ НАПРЯЖЕННО-ДЕФОРМИРОВАННООГ СОСТОЯНИЯ ПЛАСТИНЫ, ЛЕЖАЩЕЙ НА СЛОЕ ЖИДКОСТИ, ОТ ДЕЙСТВИЯ ДВИЖЕЩЕЙСЯ НАГРУЗКИ В ЗАВИСИМОСТИ ОТ ТОЛЩИНЫ ЛЬДА.

Базовые исходные данные для расчетов:

$$P := 4.10^5$$

$$q := P \div (4 \cdot a \cdot b)$$

$$q = 2 \times 10^3$$

$$G := 2.10^9$$

on
$$:= 1.2 \cdot 10^6$$

$$\tau f := 1, 5... 20$$

$$\mu := 0.33$$

$$\chi := 1$$

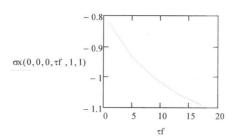
$$v := \chi \!\cdot\!\! \sqrt{g \!\cdot\! H}$$

$$v = 7.002$$

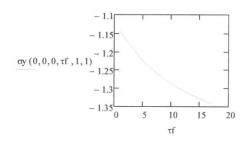
Основные обозначения:

$$A(\lambda,\eta,\tau f) := \lambda \cdot \eta \cdot \left[\frac{G \, h^3}{3} \cdot \left(\lambda^2 + \, \eta^2 \right)^2 - \lambda^2 \cdot p I \cdot (v)^2 \cdot h \, + \, \frac{p v \cdot v^2 \cdot \lambda^2}{tan \left(H \cdot \sqrt{\lambda^2 + \, \eta^2} \right) \cdot \sqrt{\lambda^2 + \, \eta^2}} \right]$$

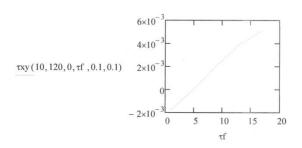
$$B(\lambda,\eta\,,\tau f\,):=\lambda^2\cdot\eta\cdot\frac{G\,h^3}{3}\cdot\tau f\cdot v\cdot\left(\lambda^2+\eta^2\right)^2$$


$$C(\lambda, \eta) := \sin(\lambda \cdot a) \cdot \sin(\eta \cdot b)$$

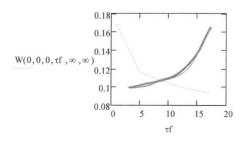
$$\varphi\left(x,y\,,\lambda\,,\eta\,,t\right):=\lambda{\cdot}(x-v{\cdot}t)\,+\,\eta{\,\cdot}y$$


 $D(x,y,t,\tau f,\lambda,\eta) := A(\lambda,\eta,\tau f) \cdot ((\cos(\phi(x,y,\lambda,\eta,t)) + \tau f \cdot \lambda \cdot v \cdot \sin(\phi(x,y,\lambda,\eta,t)))) + B(\lambda,\eta,\tau f) \cdot (\tau f \cdot \lambda \cdot v) \cdot \cos(\phi(x,y,\lambda,\eta,t))$

напряжений в точке от толщины льда:


$$\sigma x(x,y,t,\tau f^{'},\lambda,\eta) := \frac{-q}{\pi^{2}} \cdot \frac{G \, h^{3}}{3} \cdot \frac{6}{h^{2} \cdot \sigma n} \cdot \int_{-\lambda}^{\lambda} \int_{-\eta}^{\eta} \frac{C(\lambda,\eta) \cdot \left(\lambda^{2} + \mu \cdot \eta^{2}\right) \cdot D(x,y,t,\tau f^{'},\lambda,\eta)}{\left(A(\lambda,\eta,\tau f^{'})\right)^{2} + \left(B(\lambda,\eta,\tau f^{'})\right)^{2}} \, d\eta \, d\lambda$$

$$\sigma y(x,y,t,\tau f,\lambda,\eta) \coloneqq \frac{-q}{\pi^2} \cdot \frac{G\,h^3}{3} \cdot \frac{6}{h^{\frac{9}{2}} \cdot \sigma n} \cdot \int_{-\lambda}^{\lambda} \int_{-\eta}^{\eta} \frac{C(\lambda,\eta) \cdot \left(\eta^2 + \mu \cdot \lambda^2\right) \cdot D(x,y,t,\tau f,\lambda,\eta)}{\left(A(\lambda,\eta,\tau f)\right)^2 + \left(B(\lambda,\eta,\tau f)\right)^2} \, d\eta \, d\lambda$$



$$\tau xy(x,y,t,\tau f\,,\lambda,\eta) := \frac{-6}{h^2 \cdot \sigma n} \cdot \frac{q}{\pi^2} \cdot \frac{G \cdot h^3 \cdot (1-\mu)}{3} \cdot \int_{-\lambda}^{\lambda} \int_{-\eta}^{\eta} \frac{C(\lambda,\eta) \cdot (\lambda \cdot \eta) \cdot D(x,y,t,\tau f\,,\lambda,\eta)}{\left(A(\lambda,\eta,\tau f\,)\right)^2 + \left(B(\lambda,\eta,\tau f\,)\right)^2} \, d\eta \, d\lambda$$

График зависимости прогиба от толщины льда:

$$\underbrace{W(x,y,t,\tau f,\lambda,\eta)}_{} := \frac{q}{\pi^2} \cdot \int_{-\lambda}^{\lambda} \int_{-\eta}^{\eta} \frac{C(\lambda,\eta) \cdot (A(\lambda,\eta,\tau f) \cdot \cos(\phi(x,y,\lambda,\eta,t)) - B(\lambda,\mu,\tau f) \cdot \sin(\phi(x,y,\lambda,\eta,t)))}{\left(A(\lambda,\eta,\tau f)\right)^2 + \left(B(\lambda,\eta,\tau f)\right)^2} \, d\eta \, d\lambda$$

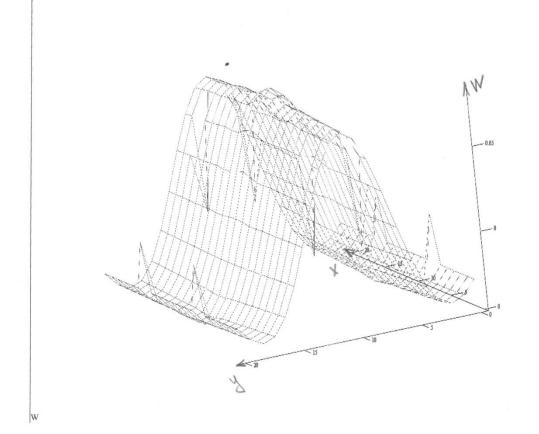
I

Изометрия напряжений в центре нагрузки

$$W(x,y,t,\tau f,\lambda,\eta) \coloneqq \frac{q}{\pi^2} \cdot \int_{-\lambda}^{\lambda} \int_{-\eta}^{\eta} \frac{C(\lambda,\eta) \cdot (A(\lambda,\eta,\tau f) \cdot \cos(\phi(x,y,\lambda,\eta,t)) - B(\lambda,\eta,\tau f) \cdot \sin(\phi(x,y,\lambda,\eta,t)))}{\left(A(\lambda,\eta,\tau f)\right)^2 + \left(B(\lambda,\eta,\tau f)\right)^2} \, d\eta \, d\lambda$$

$$n := 0..20$$

$$m := 0..20$$


$$x_n := -300 + n \cdot \frac{600}{20}$$

$$x_n := -300 + n \cdot \frac{600}{20}$$
 $y_m := -300 + m \cdot \frac{600}{20}$
$$\lambda_j := i \cdot \frac{0.2}{20}$$
 $\eta_j := j \cdot \frac{0.2}{20}$

$$\lambda_i := i \cdot \frac{0.2}{20}$$

$$\eta_{i} := j \cdot \frac{0.2}{20}$$

$$W_{n,m} := W(x_n, y_m, 0, 0.5, 0.06, 0.02)$$

Лист регистрации изменений к РПД

№ п/п	Основание внесения изменения	Количество страниц изменения	Подпись разработчика РПД