Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования «Комсомольский-на-Амуре государственный университет»

УТВЕРЖДАЮ Декан факультета Факультет кадастра и отроительства Сысоев О.Е. «23» 06 2021 г.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

«Конструкции из дерева и пластмасс»

Направление подготовки	08.03.01 Строительство	
Направленность (профиль) образовательной программы	Промышленное и гражданское строительство	
Квалификация выпускника	Бакалавр	
Год начала подготовки (по учебному плану)	2021	
Форма обучения	Очная форма	
Технология обучения	Традиционная	

Курс	Семестр	Трудоемкость, з.е.
4	7	4

Вид промежуточной аттестации	Обеспечивающее подразделение
Экзамен	Кафедра «Строительство и архитектура»

Разработчик рабочей программы:

Доцент кафедры СиА. к.т.н.

(должность, степень, ученое звание)

СОГЛАСОВАНО:

Заведующий кафедрой

«Строительство и Архитектура»

(наименование кафедры)

(подпись)

Сысоев О.Е.

(фио)

1 Введение

Рабочая программа и фонд оценочных средств дисциплины «Конструкции из дерева и пластмасс» составлены в соответствии с требованиями федерального государственного образовательного стандарта, утвержденного приказом Минобрнауки Российской Федерации, и основной профессиональной образовательной программы подготовки «Производственно-технологическое обеспечение строительства» по направлению подготовки «08.03.01 Строительство».

Задачи дисциплины	- изучить структуру и особенности работы материалов, конструктивные возможности применительно к КДиП; - выработать навыки расчета основных видов соединений и элементов КДиП; - освоить принципы компоновки конструктивных схем зданий из наиболее применяемых конструкций: балок, арок, рам, ферм, колонн, куполов; - привить способности разработать проектной и рабочей документации КДиП.
Основные разделы / темы дисциплины	 Древесина и пластмассы как конструкционные строительные материалы. Расчет элементов конструкций из дерева и пластмасс. Соединение элементов в конструкциях из дерева и пластмасс. Деревянные стержни составного сечения на податливых связях. Ограждающие и несущие конструкции из дерева и пластмасс.

2 Перечень планируемых результатов обучения по дисциплине (модулю), соотнесенных с индикаторами достижения компетенций

Процесс изучения дисциплины «Конструкции из дерева и пластмасс» направлен на формирование следующих компетенций в соответствии с ФГОС ВО и основной образовательной программой (таблица 1):

Таблица 1 – Компетенции и индикаторы их достижения

Код и наименование компетенции	Индикаторы достижения	Планируемые результаты обучения по дисциплине
ОПК-3 Способен принимать решения в профессиональной сфере, используя теоретические основы и нормативную базу строительства, строительной индустрии и жилищно-коммунального хозяйства	ОПК-3.1 Знает основные сведения об объектах и процессах профессиональной деятельности посредством использования профессиональной терминологии ОПК-3.2 Умеет выбирать методы или методики решения задачи профессиональной деятельности ОПК-3.3Владеет навыками оценки условий работы строи-	Знает основные сведения об объектах и процессах профессиональной деятельности посредством использования профессиональной терминологии Умеет выбирать методы или методики решения задачи профессиональной деятельности Владеет навыками оценки условий работы строи-

ОПК-6 Способен участвовать в проектировании объектов строительства и жилищно-коммунального хозяйства, в подготовке расчетного и техникоэкономического обоснований их проектов, участвовать в подготовке проектной документации, в том числе с использованием средств автоматизированного проектирования и вычислительных программных комплексов

тельных конструкций

ОПК-6.1 Знает основные нагрузки и воздействия, действующие на здание (сооружение), основные параметры инженерных систем здания ОПК-6.2 Умеет составлять расчётную схему здания (сооружения), определять условия работы элемента строительных конструкций при восприятии внешних нагрузок, проводить оценку прочности, жёсткости и устойчивости элемента строительных конструкций, в т.ч. с использованием прикладного программного обеспечения, оценку устойчивости и деформируемости грунтового основания здания ОПК-6.3 Владеет навыками разработки узла строительной конструкции здания, выполнения графической части проектной документации здания, инженерных систем, в т.ч. с использованием средств автоматизированного проектирования, проверки соответствия проектного решения требованиям нормативно--технических документов и технического за-

тельных конструкций

Знает основные нагрузки и воздействия, действующие на здание (сооружение), основные параметры инженерных систем здания Умеет составлять расчётную схему здания (сооружения), определять условия работы элемента строительных конструкций при восприятии внешних нагрузок, проводить оценку прочности, жёсткости и устойчивости элемента строительных конструкций, в т.ч. с использованием прикладного программного обеспечения, оценку устойчивости и деформируемости грунтового основания здания Владеет навыками разработки узла строительной конструкции здания, выполнения графической части проектной документации здания, инженерных систем, в т.ч. с использованием средств автоматизированного проектирования, проверки соответствия проектного решения требованиям нормативно-технических документов и технического задания на проектирование

3 Место дисциплины (модуля) в структуре образовательной программы

дания на проектирование

Дисциплина «Конструкции из дерева и пластмасс» изучается на 4 курсе в 7 семестре.

Дисциплина входит в состав блока 1 «Дисциплины (модули)» и относится к обязательной части.

Для освоения дисциплины необходимы знания, умения, навыки и опыт практической деятельности, сформированные в процессе изучения дисциплин / практик: Строительные материалы, Производство строительных материалов и конструкций, Архитектура

зданий, Железобетонные и каменные конструкции, Основания и фундаменты, Металлические конструкции, Основы архитектуры и строительных конструкций, Инженерные си-

стемы зданий и сооружений (электротехника и электроснабжение), Инженерные системы зданий и сооружений (водоснабжение и водоотведение), Инженерные системы зданий и сооружений (теплоснабжение с основами теплотехники), Начертательная геометрия и инженерная графика в САD-системах, Учебная практика (ознакомительная практика).

Знания, умения и навыки, сформированные при изучении дисциплины «Конструкции из дерева и пластмасс», будут востребованы при изучении последующих дисциплин: Железобетонные и каменные конструкции, а так же подготовка и сдача ГИА (подготовка и защита ВКР).

4 Объем дисциплины (модуля) в зачетных единицах с указанием количества академических часов, выделенных на контактную работу обучающихся с преподавателем (по видам учебных занятий) и на самостоятельную работу обучающихся

Общая трудоемкость (объем) дисциплины составляет 4 з.е., 144 акад. час. Распределение объема дисциплины (модуля) по видам учебных занятий представлено в таблипе 2.

Таблица 2 – Объем дисциплины (модуля) по видам учебных занятий

Объем дисциплины	Всего академических часов
Общая трудоемкость дисциплины	144
Контактная аудиторная работа обучающихся с преподавателем (по видам учебных занятий), всего	37
В том числе:	
занятия лекционного типа (лекции и иные учебные занятия, предусматривающие преимущественную передачу учебной информации педагогическими работниками)	12
занятия семинарского типа (семинары, практические занятия, практикумы, лабораторные работы, коллоквиумы и иные аналогичные занятия)	24
Самостоятельная работа обучающихся и контактная работа, включающая групповые консультации, индивидуальную работу обучающихся с преподавателями (в том числе индивидуальные консультации); взаимодействие в электронной информационно-образовательной среде вуза	72
Промежуточная аттестация обучающихся – Экзамен	35

5 Содержание дисциплины (модуля), структурированное по темам (разделам) с указанием отведенного на них количества академических часов и видов учебной работы

Таблица 3 – Структура и содержание дисциплины (модуля)

Наименование разделов, тем и содержание материала	Виды учебной работы, включая самостоятель работу обучающихся и трудоемкость (в час		•	
	Контактная работа преподавателя с обуча- ющимися		CPC	
	Лекции	Семинарские (практические занятия)	Лабораторные занятия	
Раздел 1 Древесина и пластмассы как	констру	кционные строит	ельные материа.	лы.
Краткий исторический обзор развития деревянных и пластмассовых конструкций в России и за рубежом. Творчество И.П. Кулибина, Д.И. Журавского, В.Г. Шухова в области деревянных строительных конструкций. Современное состояние, области применения и перспективы развития КДиП в строительстве. Материалы для КДиП.	2	2		10
Древесные породы. Анатомическое строение древесины. Химический состав древесины. Пороки древесины. Требования к качеству лесоматериалов и пиломатериалов. Основные особенности древесины. Влияние температуры и влажности на характеристики древесины. Коробление, усушка древесины. Физические и механические свойства древесины. Гниение древесины, конструктивные и химические меры защиты древесины от биологического поражения, от гниения и пожарной опасности. Фанера и ее характеристики.	1	4		10
Общие сведения о пластмассах. Виды пластмасс и древесных пластиков, применяемых для строительных несущих и ограждающих конструкций. Синтетические смолы. Механические свойства, достоинства и недостатки древесины и пластмасс как конструкционных строительных материалов.	1	4		10
Раздел 2 Расчет элементов конструкций из дерева и пластмасс.				
Принципы расчета деревянных и пластмассовых конструкций по предельным состояниям. Нормирование расчетных сопротивлений материа-	1	2		10

лов для КДиП. Расчет элементов деревянных и пластмассовых конструкций по предельным состояниям первой и второй групп. Особенности расчета конструкций с применением пластмасс. Работа древесины на растяжение, сжатие, поперечный изгиб, скалывание.				
Раздел 3 Соединение элементов в кон	струкция	х из дерева и плас	стмасс.	
Виды соединений и их классификация. Требования, предъявляемые к соединениям. Основные положения расчета соединений. Податливость соединений. Соединение на лобовой врубке. Соединения на пластичных нагелях. Соединения на цилиндрических нагелях. Соединения на гвоздях. Соединения на зубчатых пластинах. Соединения на растянутых связях.	2	2		8
Клееные соединения. Синтетические клеи. Требования к клеевым соединениям. Расчет клеевых соединения. Клеестальные шайбы. Вклеенные стержни. Соединение элементов конструкций из пластмасс. Соединения на клеях, на вклеенных стержнях и на клеестальных шайбах	1	2		6
Раздел 4 Деревянные стержни состави	ного сече	ния на податливы	іх связях.	
Конструкция и расчет деревянных элементов составного сечения на податливых связях при поперечном изгибе, центральном сжатии и сжатии с изгибом. Составные стойки: стержнипакеты, стойки с короткими прокладками, стойки с длинными накладками. Составные балки. Балки на пластинчатых нагелях.	2	2		6
Раздел 5 Ограждающие и несущие конструкции из дерева и пластмасс				
Общие сведения об ограждающих конструкциях. Область применения. Материалы. Виды настилов и панелей. Принципы расчета конструкций, выполненных из нескольких различных материалов. Расчет настилов. Клеефанерные плиты	1	4		6

покрытия. Деревянные плиты, настилы и обрешетки, прогоны. Трехслойные панели и плиты с применением пластмасс и асбестоцемента.			
Общие сведения о несущих конструкциях. Неразрезная система прогонов, консольно-балочные прогоны. Спаренные неразрезные прогоны. Расчет и конструирование. Дощато-клееные балки. Клеефанерные балки. Армированные балки. Балки с волнистой стенкой.	1	2	6
ИТОГО по дисциплине	12	24	72

6 Внеаудиторная самостоятельная работа обучающихся по дисциплине (модулю)

При планировании самостоятельной работы студенту рекомендуется руководствоваться следующим распределением часов на самостоятельную работу (таблица 4):

Таблица 4 – Рекомендуемое распределение часов на самостоятельную работу

Компоненты самостоятельной работы	Количество часов
Изучение теоретических разделов дисциплины	28
Подготовка к занятиям семинарского типа	20
Подготовка и оформление Расчетно-графической работы	24
Итого	72

7 Оценочные средства для проведения текущего контроля и промежуточной аттестации обучающихся по дисциплине (модулю)

Фонд оценочных средств для проведения текущего контроля успеваемости и промежуточной аттестации представлен в Приложении 1.

Полный комплект контрольных заданий или иных материалов, необходимых для оценивания результатов обучения по дисциплине (модулю), практике хранится на кафедре-разработчике в бумажном и электронном виде.

8 Учебно-методическое и информационное обеспечение дисциплины (модуля)

8.1 Основная литература

- 1. Иванов, В.А. Конструкции из дерева и пластмасс : учебник для вузов / В. А. Иванов, В. З. Клименко. Киев: Высшая школа, 2006. 279с.
- 2. Конструкции из дерева и пластмасс : учебник для вузов / Ю. В. Слицкоухов, В. Д. Буданов, М. М. Гаппоев, [и др.]; под ред. Г.Г.Карлсена, Ю.В.Слицкоухова. - 5-е изд., перераб. и доп. - М.: Стройиздат, 1986. - 543с.

- 3. Прокофьев, А.С. Конструкции из дерева и пластмасс. Общий курс: учебник для вузов / А. С. Прокофьев. М.: Стройиздат, 1996. 220с.
- 4. Семенов К.В. Конструкции из дерева и пластмасс. Деревянные конструкции [Электронный ресурс] : учебное пособие / К.В. Семенов, М.Ю. Кононова. СПб. : Санкт-Петербургский политехнический университет Петра Великого, 2013. 133 с. // IPRbooks: электронно-библиотечная система. Режим доступа: http://www.iprbookshop.ru/43953.html, ограниченный. Загл. с экрана.

8.2 Дополнительная литература

- 1. Бойтемиров, Ф. А. Расчèт конструкций из дерева и пластмасс : учебное пособие для вузов / Ф. А. Бойтемиров, В. М. Головина, Э. М. Улицкая. 3-е изд., стер. М.: Академия, 2007. 159с.
- 2. Зубарев Г. Н. Конструкции из дерева и пластмасс: Учеб. пособие для студентов вузов, обучающихся по спец. «Промышленное и гражданское строительство». 2-е изд., перераб.и доп. М.: Высшая школа, 1990. 287 с.
- 3. Конструкции из дерева и пластмасс : учебник / М. М. Гаппоев, И. М. Гуськов, Л. К. Ермоленко, В. И. Линьков. М. : Изд-во АСВ, 2008. 440с.
- 4. Столповский, Г. А. Конструкции из дерева и пластмасс. Практические рекомендации к выполнению курсового проекта [Электронный ресурс] : учебное пособие / Г.А. Столповский, В.И. Жаданов. Оренбург: ЭБС АСВ, 2016. 91 с. // IPRbooks : электронно-библиотечная система. Режим доступа: http://www.iprbookshop.ru/69904.html, ограниченный. Загл. с экрана.
- 5. Руководство по проектированию клееных деревянных конструкций. М.: Стройиздат, 1977. (Центр науч.-исслед. ин-т строит. конструкций им. В.А. Кучеренко). -189 с.
- 5. СП 64.13330.2017 Деревянные конструкции. Актуализированная редакция СНиП II-25-80 [Электронный ресурс]. Доступ из проф. справ. системы «Техэксперт».
- $6.~\mathrm{C\Pi}~16.13330.2011~\mathrm{Cтальные}$ конструкции. Актуализированная редакция СНиП II-23-81* (с Изменением N 1) [Электронный ресурс]. Доступ из проф. справ. системы «Техэксперт».
- 6. СП 20.13330.2016 Нагрузки и воздействия. Актуализированная редакция СНиП 2.01.07-85* [Электронный ресурс]. Доступ из проф. справ. системы «Техэксперт».
 - 7. СТО 36554501-015-2008 Нагрузки и воздействия

8.3 Методические указания для студентов по освоению дисциплины

- 1. Шмелѐв Г. Н. Деревянные конструкции: Учебное пособие. Казань: КГАСУ, 2011. 172 с.
- 2. Методические указания к лабораторным работам по конструкциям из дерева и пластмасс / Владим. гос. ун-т; сост. : С.И. Рощина, Е.А. Смирнов, М.В. Грязнов. Владимир : Изд-во Владим. гос. ун-та, 2010. 46 с.

8.4 Современные профессиональные базы данных и информационные справочные системы, используемые при осуществлении образовательного процесса по дисциплине

- 1. Электронно-библиотечная система ZNANIUM.COM. Договор ЕП 44 № 003/10 эбс ИКЗ 191272700076927030100100120016311000 от 17 апреля 2019 г.
- 2. Электронно-библиотечная система IPRbooks. Лицензионный договор № ЕП44 № 001/9 на предоставление доступа к электронно-библиотечной системе IPRbooks ИКЗ 191272700076927030100100090016311000 от 27 марта 2019 г.

- 3. Электронно-библиотечная система eLIBRARY.RU. Договор № ЕП 44 № 004/13 на оказание услуг доступа к электронным изданиям ИКЗ 91272700076927030100100150016311000 от 15 апреля 2019 г.
- 4. Информационно-справочные системы «Кодекс»/ «Техэксперт». Соглашение о сотрудничестве № 25/19 от 31 мая 2019 г.
- 5. Информационно-справочные системы Консультант+. Договор № 45 от 17.05.2017

8.5 Перечень ресурсов информационно-телекоммуникационной сети «Интернет», необходимых для освоения дисциплины (модуля)

- 1. Вся техническая литература: http://www.tehlit.ru/
- 2. Электронный ресурс стройконсультант: http://www.stroykonsultant.com/
- 3. Электронный ресурс национального объединения строителей: http://nostroy.ru/

8.6 Лицензионное и свободно распространяемое программное обеспечение, используемое при осуществлении образовательного процесса по дисциплине

Таблица 7 – Перечень используемого программного обеспечения

Наименование ПО	Реквизиты / условия использования	
Microsoft Imagine Premium	Лицензионный договор АЭ223 №008/65 от 11.01.2019	
OpenOffice	Свободная лицензия, условия использования по ссылке:	
	https://www.openoffice.org/license.html	

9 Организационно-педагогические условия

Организация образовательного процесса регламентируется учебным планом и расписанием учебных занятий. Язык обучения (преподавания) - русский. Для всех видов аудиторных занятий академический час устанавливается продолжительностью 45 минут.

При формировании своей индивидуальной образовательной траектории обучающийся имеет право на перезачет соответствующих дисциплин и профессиональных модулей, освоенных в процессе предшествующего обучения, который освобождает обучающегося от необходимости их повторного освоения.

9.1 Образовательные технологии

Учебный процесс при преподавании курса основывается на использовании традиционных, инновационных и информационных образовательных технологий. Традиционные образовательные технологии представлены лекциями и семинарскими (практическими) занятиями. Инновационные образовательные технологии используются в виде широкого применения активных и интерактивных форм проведения занятий. Информационные образовательные технологии реализуются путем активизации самостоятельной работы студентов в информационной образовательной среде.

9.2 Занятия лекционного типа

Лекционный курс предполагает систематизированное изложение основных вопросов учебного плана.

На первой лекции лектор обязан предупредить студентов, применительно к какому базовому учебнику (учебникам, учебным пособиям) будет прочитан курс.

Лекционный курс должен давать наибольший объем информации и обеспечивать более глубокое понимание учебных вопросов при значительно меньшей затрате времени, чем это требуется большинству студентов на самостоятельное изучение материала.

9.3 Занятия семинарского типа

Семинарские занятия представляют собой детализацию лекционного теоретического материала, проводятся в целях закрепления курса и охватывают все основные разделы.

Основной формой проведения семинаров является обсуждение наиболее проблемных и сложных вопросов по отдельным темам, а также разбор примеров и ситуаций в аудиторных условиях. В обязанности преподавателя входят: оказание методической помощи и консультирование студентов по соответствующим темам курса.

Активность на семинарских занятиях оценивается по следующим критериям:

- ответы на вопросы, предлагаемые преподавателем;
- участие в дискуссиях;
- выполнение проектных и иных заданий;
- ассистирование преподавателю в проведении занятий.

Ответ должен быть аргументированным, развернутым, не односложным, содержать ссылки на источники.

Доклады и оппонирование докладов проверяют степень владения теоретическим материалом, а также корректность и строгость рассуждений.

Оценивание заданий, выполненных на семинарском занятии, входит в накопленную оценку.

9.4 Самостоятельная работа обучающихся по дисциплине (модулю)

Самостоятельная работа студентов — это процесс активного, целенаправленного приобретения студентом новых знаний, умений без непосредственного участия преподавателя, характеризующийся предметной направленностью, эффективным контролем и оценкой результатов деятельности обучающегося.

Цели самостоятельной работы:

- систематизация и закрепление полученных теоретических знаний и практических умений студентов;
 - углубление и расширение теоретических знаний;
- формирование умений использовать нормативную и справочную документацию, специальную литературу;
- развитие познавательных способностей, активности студентов, ответственности и организованности;
- формирование самостоятельности мышления, творческой инициативы, способностей к саморазвитию, самосовершенствованию и самореализации;
 - развитие исследовательских умений и академических навыков.

Самостоятельная работа может осуществляться индивидуально или группами студентов в зависимости от цели, объема, уровня сложности, конкретной тематики.

Технология организации самостоятельной работы студентов включает использование информационных и материально-технических ресурсов университета.

Контроль результатов внеаудиторной самостоятельной работы студентов может проходить в письменной, устной или смешанной форме.

Студенты должны подходить к самостоятельной работе как к наиважнейшему средству закрепления и развития теоретических знаний, выработке единства взглядов на отдельные вопросы курса, приобретения определенных навыков и использования профессиональной литературы.

9.5 Методические указания для обучающихся по освоению дисциплины

При изучении дисциплины обучающимся целесообразно выполнять следующие рекомендации:

- 1. Изучение учебной дисциплины должно вестись систематически.
- 2. После изучения какого-либо раздела по учебнику или конспектным материалам рекомендуется по памяти воспроизвести основные термины, определения, понятия раздела.
- 3. Особое внимание следует уделить выполнению отчетов по практическим занятиям и индивидуальным комплексным заданиям на самостоятельную работу.
- 4. Вся тематика вопросов, изучаемых самостоятельно, задается на лекциях преподавателем. Им же даются источники (в первую очередь вновь изданные в периодической научной литературе) для более детального понимания вопросов, озвученных на лекции.

При самостоятельной проработке курса обучающиеся должны:

- просматривать основные определения и факты;
- повторить законспектированный на лекционном занятии материал и дополнить его с учетом рекомендованной по данной теме литературы;
- изучить рекомендованную литературу, составлять тезисы, аннотации и конспекты наиболее важных моментов;
 - самостоятельно выполнять задания, аналогичные предлагаемым на занятиях;
 - использовать для самопроверки материалы фонда оценочных средств.

10 Описание материально-технического обеспечения, необходимого для осуществления образовательного процесса по дисциплине (модулю)

10.1 Учебно-лабораторное оборудование

Таблица 8 – Перечень оборудования лаборатории

Аудитория	Наименование аудитории	Используемое оборудова-
	(лаборатории)	ние
26/1	Лаборатория строительных	весы лабораторные ВЦЛ-
	конструкций.	10М, испытательный стенд
		винтовой для испытаний
		балок, испытательный
		стенд гидравлический для
		испытаний колонн, станок
		токарный ТВ-4, бетонос-
		меси-
		тель передвижной СВ-101.
123/1	Лаборатория строительных	пресс электрический 2ПГ-
	материалов.	125, пресс механический
		ручной ПГЛ5, вольтметр,
		оборудование лаборатор-
		ное (набор сит, конусы, по-
		суда, угломер, колбы, лот-
		ки, опалубки, мастерки),
		установка ультразвуковая
		УЗУ-0,1, весы электронные
		MK-32,2 AB20.

10.2 Технические и электронные средства обучения

При проведении занятий используется аудитория, оборудованная проектором (стационарным или переносным) для отображения презентаций. Кроме того, при проведении лекций и практических занятий необходим компьютер с установленным на нем браузером и программным обеспечением для демонстрации презентаций.

11 Иные сведения

Методические рекомендации по обучению лиц с ограниченными возможностями здоровья и инвалидов

Освоение дисциплины обучающимися с ограниченными возможностями здоровья может быть организовано как совместно с другими обучающимися, так и в отдельных группах. Предполагаются специальные условия для получения образования обучающимися с ограниченными возможностями здоровья.

Профессорско-педагогический состав знакомится с психолого-физиологическими особенностями обучающихся инвалидов и лиц с ограниченными возможностями здоровья, индивидуальными программами реабилитации инвалидов (при наличии). При необходимости осуществляется дополнительная поддержка преподавания тьюторами, психологами, социальными работниками, прошедшими подготовку ассистентами.

В соответствии с методическими рекомендациями Минобрнауки РФ (утв. 8 апреля 2014 г. N АК-44/05вн) в курсе предполагается использовать социально-активные и рефлексивные методы обучения, технологии социокультурной реабилитации с целью оказания помощи в установлении полноценных межличностных отношений с другими студентами, создании комфортного психологического климата в студенческой группе. Подбор и разработка учебных материалов производятся с учетом предоставления материала в различных формах: аудиальной, визуальной, с использованием специальных технических средств и информационных систем.

Освоение дисциплины лицами с OB3 осуществляется с использованием средств обучения общего и специального назначения (персонального и коллективного использования). Материально-техническое обеспечение предусматривает приспособление аудиторий к нуждам лиц с OB3.

Форма проведения аттестации для студентов-инвалидов устанавливается с учетом индивидуальных психофизических особенностей. Для студентов с ОВЗ предусматривается доступная форма предоставления заданий оценочных средств, а именно:

- в печатной или электронной форме (для лиц с нарушениями опорнодвигательного аппарата);
- в печатной форме или электронной форме с увеличенным шрифтом и контрастностью (для лиц с нарушениями слуха, речи, зрения);
 - методом чтения ассистентом задания вслух (для лиц с нарушениями зрения).

Студентам с инвалидностью увеличивается время на подготовку ответов на контрольные вопросы. Для таких студентов предусматривается доступная форма предоставления ответов на задания, а именно:

- письменно на бумаге или набором ответов на компьютере (для лиц с нарушениями слуха, речи);
- выбором ответа из возможных вариантов с использованием услуг ассистента (для лиц с нарушениями опорно-двигательного аппарата);
 - устно (для лиц с нарушениями зрения, опорно-двигательного аппарата).

При необходимости для обучающихся с инвалидностью процедура оценивания результатов обучения может проводиться в несколько этапов.

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

по дисциплине

«Конструкции из дерева и пластмасс»

Направление подготовки	08.03.01 Строительство			
Направленность (профиль) образовательной программы	Промышленное и гражданское строительство			
Квалификация выпускника	Бакалавр			
Год начала подготовки (по учебному плану)	2021			
Форма обучения	Очная форма			
Технология обучения	Традиционная			

Курс	Семестр	Трудоемкость, з.е.				
4	7	4				

Вид промежуточной аттестации	Обеспечивающее подразделение				
Экзамен	Кафедра «Строительство и архитектура»				

1 Перечень планируемых результатов обучения по дисциплине (модулю), соотнесенных с индикаторами достижения компетенций

Таблица 1 – Компетенции и индикаторы их достижения

Таблица 1 – Компетенции и индикаторы их достижения								
Код и наименование компетенции	Индикаторы достижения	Планируемые результаты обучения по дисциплине						
ОПК-3 Способен принимать решения в профессиональной сфере, используя теоретические основы и нормативную базу строительства, строительной индустрии и жилищно-коммунального хозяйства	ОПК-3.1 Знает основные сведения об объектах и процессах профессиональной деятельности посредством использования профессиональной терминологии ОПК-3.2 Умеет выбирать методы или методики решения задачи профессиональной деятельности ОПК-3.3Владеет навыками оценки условий работы строительных конструкций	Знает основные сведения об объектах и процессах профессиональной деятельности посредством использования профессиональной терминологии Умеет выбирать методы или методики решения задачи профессиональной деятельности Владеет навыками оценки условий работы строительных конструкций						
ОПК-6 Способен участвовать в проектировании объектов строительства и жилищно-коммунального хозяйства, в подготовке расчетного и техникоэкономического обоснований их проектов, участвовать в подготовке проектной документации, в том числе с использованием средств автоматизированного проектирования и вычислительных программных комплексов	ОПК-6.1 Знает основные нагрузки и воздействия, действующие на здание (сооружение), основные параметры инженерных систем здания ОПК-6.2 Умеет составлять расчётную схему здания (сооружения), определять условия работы элемента строительных конструкций при восприятии внешних нагрузок, проводить оценку прочности, жёсткости и устойчивости элемента строительных конструкций, в т.ч. с использованием прикладного программного обеспечения, оценку устойчивости и деформируемости грунтового основания здания ОПК-6.3 Владеет навыками разработки узла строительной конструкции здания, выполнения графической части проектной документации здания, инженерных систем, в т.ч. с использованием средств автоматизированного проектирования, проверки соответствия проектного решения требованиям нормативнотехнических	Знает основные нагрузки и воздействия, действующие на здание (сооружение), основные параметры инженерных систем здания Умеет составлять расчётную схему здания (сооружения), определять условия работы элемента строительных конструкций при восприятии внешних нагрузок, проводить оценку прочности, жёсткости и устойчивости элемента строительных конструкций, в т.ч. с использованием прикладного программного обеспечения, оценку устойчивости и деформируемости грунтового основания здания Владеет навыками разработки узла строительной конструкции здания, выполнения графической части проектной документации здания, инженерных систем, в т.ч. с						

документов и технического задания на проектирование	использованием средств автоматизированного проектирования, проверки соответствия проектного решения требованиям нормативно-технических документов
	технических документов и технического задания на проектирование

Таблица 2 – Паспорт фонда оценочных средств

Контролируемые разделы (темы) дис- циплины	Формируемая компетенция	Наименование оценочного сред- ства	Показатели оценки		
Древесина и пласт- массы как конструк- ционные строительные мате-	ОПК-3 ОПК-6	Лабораторная работа № 1	Определяет физические характеристики и влажностное состояние древесины		
риалы		Лабораторная работа № 2	Определяет прочностные характеристики древесины		
		Лабораторная работа № 3	Определяет разрушаю- щей нагрузки		
			Определяет фактические прочностные характери- стики		
Расчет элементов конструкций из дерева и пластмасс.	ОПК-3 ОПК-6	Практическая работа № 1	Предоставляет подбор сечение стержня		
		Практическая работа № 2	Предоставляет расчет централь- но-сжатого элемента		
		Практическая работа № 3	Предоставляет расчет изгибае- мых элементов		
Соединение эле- ментов в конструк- циях из дерева и пластмасс.	ОПК-3 ОПК-6	Практическая работа № 4	Предоставляет расчет попереч- ных и наклонных лобовых упоров		
		Лабораторная работа № 5	Определяет несущую способ- ность гвоздевого соедине- ния		

		Лабораторная работа № 6	Определяет максималь- ную не- сущую способность со- единения
Деревянные стержни составно- го сечения на по-	ОПК-3 ОПК-6	Практическая работа № 5	Предоставляет расчет со- ставных стоек
датливых связях.		Лабораторная работа № 7	Определяет действительные нормальные напряжения, несущую способность и деформативность составной балки на податливых связях
Ограждающие и несущие конструк-	ОПК-3 ОПК-6	Практическая работа № 6	Предоставляет расчет клеефа- нерной панели
ции из дерева и пластмасс.		Практическая работа № 7	Предоставляет расчет неразрез- ного спаренного прогона
		Практическая работа № 8	Предоставляет расчет двускат- ной клеедеревянной балки
		Лабораторная работа № 8	Определяет действительные нормальные напряжения, несущую способность и деформативность деревянной балки при поперечном изгибе
Все разделы	ОПК-3 ОПК-6	Расчетно- графическая работа	Формулирует цель и задачи работы. Обосновывает методы решения поставленных задач. Формулирует результаты своей работы.

² Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующие процесс формирования компетенций

Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности, представлены в виде технологической карты дисциплины (таблица 3).

Таблица 3 — Технологическая карта

Наименование оценочного полнения нивания средства Полнения		Критерии оценивания			
	Промежуточн	в форме «Экзамен»			
Практическая работа № 1-8			5 баллов - студент правильно выполнил практическое задание. Показал отличные умения в рамках освоенного учебного материала. 4 балла - студент выполнил практическое задание с небольшими неточностями. Показал хорошие умения в рамках освоенного учебного материала. 3 балла - студент выполнил практическое задание с существенными неточностями. Показал удовлетворительные умения в рамках освоенного учебного материала. 2 балла - при выполнении практического задания студент продемонстрировал неудовлетворительный уровень умений. 0 баллов — задание не выполнено.		
Лабораторная работа № 1-8	-		5 баллов - студент правильно выполнил лабораторную работу. Показал отличные умения в рамках освоенного учебного материала. 4 балла - студент выполнил лабораторную работу с небольшими неточностями. Показал хорошие умения в рамках освоенного учебного материала. 3 балла - студент выполнил лабораторную работу с существенными неточностями. Показал удовлетворительные умения в рамках освоенного учебного материала. 2 балла - при выполнении лабораторной работы студент продемонстрировал неудовлетворительный уровень умений. 0 баллов — задание не выполнено.		

Расчетно- графическая работа	В течение семестра	15 баллов	15 баллов - работа выполнена в полном объеме, в соответствии с предусмотренными нормами проектирования, ответил правильно на все вопросы при защите РГР. 10 баллов - работа выполнена в полном объеме, в соответствии с предусмотренными нормами проектирования, ответы на вопросы при защите были неточными. 5 баллов - работа выполнена с существенными неточностями, показал слабые знания при защите работы.
итого:		95 баллов	

Критерии оценки результатов обучения по дисциплине:

- 0-64~% от максимально возможной суммы баллов «неудовлетворительно» (недостаточный уровень для промежуточной аттестации по дисциплине);
- 65 74 % от максимально возможной суммы баллов «удовлетворительно» (пороговый (минимальный) уровень);
- 75 84 % от максимально возможной суммы баллов «хорошо» (средний уровень);
- 85-100 % от максимально возможной суммы баллов «отлично» (высокий (максимальный) уровень)

Задания для текущего контроля

Комплект заданий для практических работ

<u>Практическая работа № 1. Порядок расчета элементов конструкций. Расчет центральнорастянутого элемента.</u>

Подобрать сечение стержня, в котором действует растягивающее усилие N. Сечение имеет ослабление отверстиями в более широких пластях.

Таблица 7 - Исходные данные для практической работы № 1

1000		1101107110	10 данный д	our inpention	I more	WOOTE T
		Ослабления		Материал		Условия эксплуатации
№	Np, кг	число	Диа- метр, см	порода	сорт	

1	8000	2	1,2	пихта	1	на открытом воздухе	в сухой зоне
2	14000	2	1,8	лист- венница	2		в нормальной зоне
3	11000	1	1,6	ель	1		во влажной зоне
4	19000	0		сосна	1	Внутри не отаплива-	в сухой зоне
5	7000	2	2,2	осина	1	емых помещений	во влажной зоне
6	11000	2	1,4	липа 2			в нормальной зоне
7	13000	1	1,8	тополь	2	Внутри отапливаемых помещений при	свыше 75 до 95%
8	16000	1	1,2	береза	1	температуре до 35°C, относительной	свыше 60 до 75%
9	20000	0		дуб	1	влажности воздуха	до 60%

Практическая работа № 2. Расчет центрально-сжатого элемента.

Проверить сечение стойки из бруса размерами b*h или бревна диаметром d (если указан диаметр d - бревно, если указаны размеры b и h - брус) длиной L загруженной сжимающей силой N. Стойка шарнирно-закреплена с обеих сторон. Ослабления - отверстия соответствующего диаметра, просверлены в более широких пластях.

Таблица 8 – Исходные данные для практической работы № 2

	лици	полоді	пыс даг	iiibie ,	45171 111	, aitiii	recitor	Pacorbi	- 1		
No	N w	0.0000000000000000000000000000000000000	Ослабле- ния		сечение, см Материа		иал	Условия э	ксплуатации		
140	N, кг	чис-	диа метр	М	b	h	d	поро- да	cop		
1	800	0		5	10	10		сосна	3		в сухой зоне
2	25000	0		4	10	14		сосна	1	На откры- том возду-	в нормальной зоне
3	3000	1	2	5	12	16		ель	1	xe	во влажной зоне
4	8500	2	1,8	4	15	15		ель	2	В частях	соприкасаю- щихся с грун- том
5	8500	0		3,5	14	14		ель	1	зданий и сооруже-	постоянно увлажняемых
6	7500	1	3,2	3	14	16		ель	3	ний	находящихся в воде
7	6500	2	2,4	4,5	14	20		осина	1	Buyenu	в сухой зоне
8	35000	1	1,6	3			24	бере- за	3	Внутри неотапли- ваемых	в нормальной зоне
9	10000	2	2,4	4	15	15		дуб	2	помещений	во влажной зоне

Практическая работа № 3. Расчет изгибаемых элементов.

3.1 Проверить прочность брусчатого стержня пролетом L, сечением bxh, (круглого диаметром d) без ослаблений. Брус изгибается в направлении большего размера сечения равномерной нагрузкой q (рисунок 1).

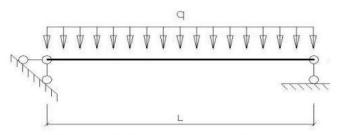


Рисунок 1. Расчетная схема балки

Таблица 9 - Исходные данные для задачи 3.1

No	q, кг/м	L,	сеч	ение,	СМ	Матер	иал	Условия экспл	уатации
745	q, K1/M	M	b	h	d	порода	сорт		
1	150	3,5	16	12		осина	2		в сухой зоне
2	250	5			22	липа	2	на открытом воздухе	в нормальной зоне
3	50	3	10	12		клен	2		во влажной зоне
4	250	4	14	10		пихта	1		в сухой зоне
5	200	2,5	14	20		дуб	3	Внутри не отаплива- емых помещений	во влажной зоне
6	350	3	14	14		пихта	3		в нормальной зоне
7	250	5,5	12	18		береза	1	Внутри отапливаемых помещений при	свыше 75 до 95%
8	350	3,5	10	18		ель	1	температуре до 30°C, относительной	свыше 60 до 75%
9	200	2	10	12		сосна	1	влажности воздуха	до 60%

3.2 Проверить прочность брусчатого стержня пролетом L, сечением bxh (круглого диаметром d), без ослаблений. Брус изгибается в направлении большего размера сечения равномерной погонной нагрузкой q, (рисунок 2).

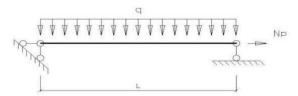


Рисунок 2. Расчетная схема балки

Таблица 10 – Исходные данные для задачи 3.2

№	No. 165	q,	L,	сеч	ение,	СМ	Материа	Л	Условия эксплуатации	
JN⊡	Np, кг	$\kappa\Gamma/M$	M	b h d		d	порода	сорт		
1	5000	200	2	10	12		сосна	1	Внутри отапливаемых по-	до 60%
2	3000	350	3.5	10	18		ель	1	мещений при температуре до	свыше 60 до 75%
3	100	150	5.5	12	14		лиственница	2	30°С, относительной влажности воздуха	свыше 75 до 95%

4	900	100	5	12	20		береза	2	Deve grown vo	в сухой зоне
5	2000	400	2.5	14	16		дуб	1	Внутри не отапливаемых	во влажной зоне
6	1300	300	3.5	14	12		пихта	2	помещений	в нормаль- ной зоне
7	4500	100	4	16	14		осина	3		в сухой зоне
8	1500	250	5			22	липа	2	на открытом воздухе	в нормаль- ной зоне
9	4500	100	3.5	10	14		клен	3		во влажной зоне

<u>Практическая работа № 4. Расчет соединений элементов деревянных конструкций. Лобовые и конструктивные врубки.</u>

4.1 Проверить прочность поперечного лобового упора при смятии балки, опертой на стойку, сечения которых имеют размеры bxh (или круглое диаметром d). В стойке действует предельная сжимающая сила Nc (рисунок 3).

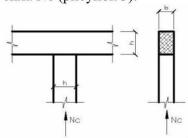


Рисунок 3. Поперечный лобовой упор

Таблица 11 – Исходные данные для задачи 4.1

No	Nc, кг	cet	ение,	СМ	Материа.	л	Условия эксплуа	тации
145	INC, KI	b	h	d	порода сој			
1	6000	18	18		осина	1		в сухой зоне
2	8000	20	20		сосна	1	Внутри не отапливае-	в сухой зоне
3	15000			36	береза	2	мых помещений	во влажной зоне
4	14000			30	ель	1		в нормаль- ной зоне
5	11000	20	22		пихта	1	Внутри отапливаемых помещений при темпе-	свыше 60 до 75%
6	10000	22	22		лиственница	3	ратуре до 35°C, относительной влажности воздуха	до 60%

4.2 Проверить прочность при смятии наклонного лобового упора торцов подвеса и ригеля из брусьев сечением bxh (или круглого диаметром d), соединенных под углом α. Конец подвеса обрезан под прямым углом к оси и в нем действует продольная сжимающая сила Nc. Опорный конец ригеля обрезан под углом α к его оси (рисунок 4).

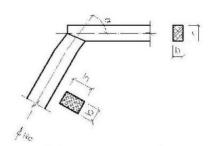


Рисунок 4. Наклонный лобовой упор

Таблица 12 – Исходные данные для задачи 4.2

1 403	пица 12	11071	одпыс	данн	тые да	и зада и т.2			
No	Nc, кг	cer	нение,	СМ	α, ο	Матери	ал	Условия эксплуатации	
745	INC, KI	b	h	d	u,	порода	сорт		
1	8000	20	20		30	сосна	1		в сухой зоне
2	5000	16	20		38	осина	2	Внутри не отаплива-	в сухой зоне
3	15000			36	28	береза	2	емых помещений	во влажной зоне
4	12000			22	30	ель	3		в нормаль- ной зоне
5	5500	18	22		35	пихта	2	Внутри отапливае- мых помещений при	свыше 60 до 75%
6	5000	18	18		30	лиственни- ца	1	температуре до 35°C, относительной влажности воздуха	до 60%

4.3 Проверить прочность лобовой врубки с одним зубом опорного узла фермы. Стержни верхнего и нижнего пояса имеют сечения bxh и в них действуют усилия сжатия Nc. Сжатый стержень наклонен под углом α к растянутому. Глубина врубки $h_{\rm вp}$. Расстояние от нижней точки врубки до конца пояса $L_{\rm ck}$ (рисунок 5).

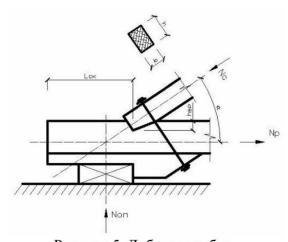


Рисунок 5. Лобовая врубка

Таблица 13 – Исходные данные для задачи 4.3

- 40	отписто	110	годин	то дан	TIDIO A	in suga	4 111 110	-	
№	Nc, кг		сече-		ие, см $ \alpha, \circ $ $h_{\rm Bp}, L_{\rm ck},$ Ма		Материа	Материал Условия эксплуата	
,		b	h		СМ	СМ	порода	сорт	

1	5000	18	18	30	4.5	45	дуб	1	Внутри отапливаемых помещений при	до 60%
2	9000	20	16	28	5	50	ель	2	температуре до 35°C, относительной влажности воздуха	свыше 60 до 75%
4	6500	20	16	40	4	40	сосна	3	Внутри не	в сухой зоне
5	5000	18	14	25	8	90	береза	1	отапливаемых помещений	во влажной зоне
7	4000	16	24	35	6	65	осина	1	на открытом	в сухой зоне
8	5000	20	20	38	5	50	осина	2	воздухе	в нормаль- ной зоне

<u>Практическая работа № 5. Расчет элементов составного сечения на податливых связях.</u> <u>Расчет составных стоек.</u>

Определить несущую способность шарнирно-закрепленной деревянной стойки составного сечения длиной L. Сечение стойки - два бруса толщиной h1и шириной b. Брусья соединены болтами диаметром d расположенные с шагом L1 в два ряда (рисунок 6).

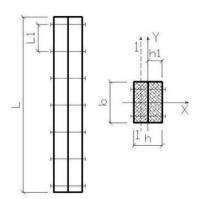


Рисунок 6. Составная стойка

Таблица 14 – Исходные данные для практической работы № 5

Tac	лица 14	- MCX	одные д	данны	е для	ои рао	OTH No S		
№	Lv		ение, м	Болты		Материал		Условия з	оксплуатации
710	L, м	b	h	L1, d,		порода	сорт		
1	3.5	12.5	10	50	1.4	осина	2	Duvrou uo	в сухой зоне
2	3	17.5	5	50	2	береза	3	Внутри не отапливаемых	во влажной зоне
3	5	22.5	12.5	50	1.4	дуб	1	помещений	в нормальной зоне
4	4.5	12.5	6	50	1.4	сосна	2	на открытом	в сухой зоне
5	4	15	7.5	50	1.6	сосна	1	воздухе	в нормальной зоне

6	5	22.5	5	50	1.4	ель	1
7	4.5	10	6	50	1.6	ель	3
8	3.5	15	10	50	1.2	ель	1
9	3	17.5	12.5	50	1.4	ель	3

Практическая работа № 6. Расчет ограждающих конструкций. Расчета панелей.

Произвести проверку несущей способности и жесткости клеефанерной панели (рисунок 7) при следующих исходных данных: расчетный пролет l; нормативная нагрузка q^H ; расчетная нагрузка q; верхняя обшивка выполнена из фанеры марки Φ С Φ толщиной δ_1 ; нижняя обшивка - из фанеры марки Φ С Φ толщиной δ_2 ; ребра - из сосновых досок 2-го сорта. Температурно-влажностный режим A2.

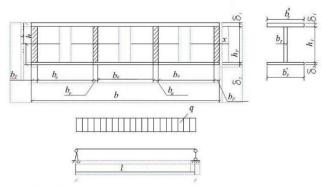


Рисунок 7. Поперечное сечение и расчетная схема панели

Таблица 15 – Исхолные данные для практической работы № 6

1 a0.	Таолица 15 – исходные данные для практической работы № 6 Толщина обшивки,											
№	Процет и	Нагру	зка, Кн/м	Сечение ре-		обшивки, м	Кол-во					
145	Пролет, м	расчетная	нормативная	бра b _р h _р , мм	δ ₁ верх- ней	δ ₂ ниж- ней	ребер					
1	3	4,0	3,6	40x144	6	6	5					
2	3.1	3,8	2,8	44x144	7	7	4					
3	3.2	3,4	2,4	44x169	8	8	4					
4	3.3	3,0	2,2	44x169	9	9	4					
5	3.5	2,45	1,8	44x144	10	10	4					
6	4	2,35	2,0	44x169	12	12	3					
7	4.5	2,0	1,6	35x194	8	8	5					
8	5	2,8	2,2	35x168	9	9	3					
9	5.5	3,8	3,0	44x144	10	10	3					

<u>Практическая работа № 7. Расчет изгибаемых конструкций. Расчета прогонов.</u> Запроектировать неразрезной спаренный прогон при следующих исходных данных:

Таблица 16 – Исходные данные для практической работы № 7

No	Пролет,	Нормативная	Расчетная	Материал, сорт	Условия
212	MM	нагрузка, кН/м	нагрузка, кН/м	Marchasi, copi	эксплуатации

1	3000	4,0	4,8	сосна, 2с	A1
2	3100	3,2	3,84	пихта, 3с	A3
3	3200	4,2	5,04	лиственница, 3с	B2
4	3500	2,8	3,36	осина, 2с	B1
5	4000	2,9	3,48	береза, 3с	Б2
6	4500	4,1	4,92	дуб, 2с	В3
7	5000	3,5	4,2	ель, 1с	A2
8	3000	2,6	3,12	кедр, 2с	B2
9	3200	4,3	5,16	сосна, 2с	A2

<u>Практическая работа № 8. Расчет изгибаемых конструкций. Расчет двускатной клеедеревянной балки.</u>

Запроектировать двускатную клеедеревянную балку покрытия при следующих исходных данных:

Таблица 17 – Исходные данные для практической работы № 8

No	Пролет,	Нормативная	Расчетная	Материал, сорт	Условия
	M	нагрузка, кН/м	нагрузка, кН/м	, ,	эксплуатации
1	9.4	13,8	14,6	лиственница, 2с	Б2
2	9.5	12,1	13,8	пихта, 1с	Б3
3	9.6	14,0	17,5	ель, 1с	B1
4	9.7	14,2	16,7	пихта, 2с	B2
5	9.8	13,5	15,2	ель, 1с	В3
6	9.9	10,8	13,4	кедр, 2с	Γ1
7	10	12,3	14,6	пихта, 1с	A1
8	10.1	10,0	13,8	ель, 1с	A2
9	10.2	13,2	17,5	пихта, 2с	A3

Комплект заданий для лабораторных работ

<u>Лабораторная работа № 1. Определение плотности и естественной влажности древесины.</u> Цель работы: определить физические характеристики и влажностное состояние древесины.

<u>Лабораторная работа №2. Оценка прочностных свойств древесины.</u> Цель работы: приближенными методами определить прочностные характеристики древесины.

Лабораторная работа № 3. Исследование работы древесины под нагрузкой. Цель работы: исследование характера работы материала под нагрузкой; определение разрушающей нагрузки.

<u>Лабораторная работа № 4. Определение прочностных характеристик древесины.</u> Цель работы: определение фактических прочностных характеристик и сравнение их с предварительными приближенными оценками из работы №2. По результатам испытаний древесина во всех учебных группах методами статической обработки данных определяются фактические характеристики прочности. Результаты обработки оформляются в табличной форме.

Таблица 18 – Форма журнала статической обработки результатов

Шифр группы	Значения	\bar{X}	ΔΧ	S	V	Sx	P	Примечание
1	2	3	4	5	6	7	8	9

Лабораторная работа № 5. Исследование работы гвоздевого соединения.

Цель работы:

- 1. Определить разрушающую нагрузку.
- 2. Выявить влияние шляпок гвоздей на несущую способность соединения.
- 3. Определить нагрузку, при которой резко возрастают остаточные деформации.
- 4. Определить деформацию соединения при расчетной нагрузке.

Результаты обработки оформляются в табличной форме.

Таблица 19 – Определение деформации соединения на гвоздях

	•		атор №				катор М		Средн	ие де	формац	ии за
									цикл,	MM		
	OT-	Пол-	Упру-	Пол-	Отсчет	Пол	Упру-	Пол-	Пол-	Упру-	Оста-	Пол-
	счет	ная	гая де-	ная	по	ная	гая де-	ная	ная за	гая	точная	ная
Нагруз	по	дефор-	дефор-	дефор-	при-	де-	дефор-	дефор	цикл			де-
ка, кН	при-	фор-	фор-	фор-	бору,	фор	фор-	фор-				фор-
(кгс)	бору,	мация	мация	мация		ма-		мация				ма-
	MM	за	образ-	образ-		ция	образ-	об-				ция
		цикл,	ца, мм	ца, мм		за	ца, мм	разца,				об-
		MM				цикл		MM				разца
0 (0)												
1 (100)												
3 (300)												
1 (100)												
5 (500)												
1 (100)												
7 (700)						7						
1 (100)												
9 (900)												
1 (100)												
11												
1 (100)												
13 (1300)												
1 (100)												
15												
1 (100)												
P _{pa3}						2						

Лабораторная работа № 6. Испытание соединения на нагелях.

Цель работы:

- 1. Определить нагрузку, при которой резко возрастают остаточные деформации.
- 2. Определить деформацию соединения при расчетной нагрузке.

Результаты обработки оформляются в табличной форме.

Таблица 20 – Определение деформации сдвига образца

Olipez	dere Hed	орина	одын а обр	шэди		
Инди	катор № 1	Инди	катор № 2	Средняя	8	
	Деформа- ция за ступень, мм	Отсчет по при- бору	Дефор- мация за ступень, мм	деформация за ступень (приращения деформа- ции), мм	Полная деформа- ция об- разца, мм	примечание
	Инди Отсчет по при-	Индикатор № 1 Отсчет по при- бору Деформа- ция за ступень,	Индикатор № 1 Инди Отсчет по при- бору Инди Отсчет по при- бору Отсчет по при- бору	Индикатор № 1 Индикатор № 2 Отсчет по при- бору Деформа- по при- за ступень, бору Индикатор № 2 Деформа- по при- бору дефор- мация за ступень,	Индикатор № 1 Индикатор № 2 Средняя Отсчет по при- бору Деформа- ция по при- бору Деформа- по при- бору Деформа- по при- бору ММ Деформа- по при- бору ММ Деформа- по при-	Индикатор № 1 Индикатор № 2 Средняя Отсчет по при- бору Деформа- по при- бору Деформа- по при- бору Деформа- по при- бору Деформа- по при- бору Мм Деформа- по при- по при- бору Мм Деформа- по при- по при- бору Мм Деформа- по при- по при-

<u>Лабораторная работа № 7. Исследование работы составной балки на податливых связях.</u> Цель работы:

- 1. Определить расчетную несущую способность балки по нормальным напряжениям.
- 2. Определить расчетную несущую способность балки из условия работы податливых связей на сдвигающие усилия.
- 3. Определить фактическую предельную несущую способность балки.
- 4. Определить величину и характер распределения нормальных напряжений по высоте поперечного сечения при расчетной нагрузке.
- 5. Определить теоретическое и экспериментальное значения прогиба балки при расчетной нагрузке и характер изменения экспериментального прогиба балки при нагружении.
- 6. Экспериментально определить величину и характер распределения сдвигов по длине балки.

Результаты обработки оформляются в табличной форме.

Таблица 19 – Определение прогибов

	Π-	- 1	Π-	. 2	$\Delta 1 + \Delta 2$	Π-	- 3	
Нагрузка, кН	Отсчет по при- бору	Δ1, мм	Отсчет по при- бору	Δ2, мм	$\frac{\Delta 1 + \Delta 2}{2}$,	Отсчет по при- бору	Δ3, мм	Прогиб, мм

Таблица 20 - Определение сдвигов

	Сдвигомеры (индикаторы)												
	И1		И	2	ИЗ	3	И	4	И	5	И	6	
Нагрузка, МН	Отсчет	Сдвиг	Отсчет	Сдвиг	Отсчет	Сдвиг	Отсчет	Сдвиг	Отсчет	Сдвиг	Отсчет	Сдвиг	

Таблица 21 – Определение напряжений

Помолкови	Тензометры								
Параметр	T1	T2	Т3	T4	T5	Т6			
Нулевой отсчет									
Отсчет при расчет- ной нагрузке									
Разность отсчетов <i>n</i>									
Напряжение									

Лабораторная работа № 8. Исследование работы клееной балки.

Цель работы:

- 1. Определить несущую способность балки по расчетным нормальным напряжениям.
- 2. Определить несущую способность балки по расчетным касательным напряжениям.
- 3. Определить теоретические и опытные значения прогиба при расчетной нагрузке.
- 4. Определить величину и характер распределения нормальных напряжений по высоте клееного сечения балки при расчетной нагрузке.
- 5. Определить усредненный модуль упругости и сопоставить его с расчетным значением.
- 6. Определить влияние поперечной силы на полный прогиб балки.

Результаты обработки оформляются в табличной форме.

Таблица 22 – Определение относительных деформаций балки

Виды отсчетов и		Тензометр	оы (база = 2	0 MM, m = 10	000)	
вычислений	№ 1	№ 2	№ 3	№ 4	№ 5	№ 6
Начальные отсчеты P = 0, H (кгс)						
Конечные отсчеты P , H (кгс)						
Разность отсчетов						
Средняя разность отсчетов n						
Напряжение σ, МПа (кгс/см ²)						

Таблица 23 – Определение прогибов балки

Нагр	узка	Отсчет	г по индикато	Прогиб, мм		
в долях от P_{pac}	Н (кгс)	<i>U</i> -1	<i>U</i> -2	<i>U</i> -3	f_2	<i>f</i> (1□3)

Комплект заданий для расчетно-графической работы.

Разработать проект одноэтажного каркасного производственного цеха, все несущие и ограждающие элементы которого выполнены из древесины хвойных пород или из синтетических материалов (пластмасс). Исходные данные выбирают из таблицы 24 по трем последним цифрам учебного шифра студента.

Таблица 24 – Исходные данные

				Но	мер в	ариан	та			
Наименование данных	0	1	2	3	4	5	6	7	8	9
		По	посл	едней	і цифј	эе уче	бного	шиф	pa	
1. Номер схемы здания	2	3	3	2	1	3	2	3	2	1
2. Расчетный пролет l_1 , м	16	24	16	18	20	22	24	18	21	15
3. Высота от уровня пола до низа несущей конструкции покрытия H_1 , м	12	10	8	8	10	10	12	12	10	10
		По п	редпо	следн	ней ци	фре у	чебно	ого ші	ифра	
4. Район строительства по весу	V	I	II	III	IV	V	I	II	III	IV

снегового покрова										
5. То же, по ветровой нагрузке	I	II	III	IV	V	I	II	III	IV	V
	По третьей с конца цифре шифра									
6. Расстояние (шаг) между несущими покрытиями (рамами) В, м	5,0	6,0	4,8	4,8	6,0	6,2	5,0	4,6	6,0	5,4

Здание цеха — однопролетное. Основной несущий элемент — поперечные трех-шарнирная или двухшарнирная рамы, схемы которых показаны на рисунке 8. Схема 1 — гнутоклееная трехшарнирная рама; схема 2 — дощатоклееная рама из прямоугольных элементов; схема 3 — рама со сплошными дощатоклееными стойками. На схемах указаны места расположения электрических талей грузоподъемностью 1–5 т.

Дополнительные исходные данные.

- 1. Порода древесины сосна и ель.
- 2. Все здания утепленные.
- 3. В качестве ограждающих элементов покрытий и стен рекомендуется применять трехслойные панели из легкого утеплителя (пенопласта, сотопласта и др.), оклеенного листами асбестоцемента, стеклопластика, алюминия и пр., а также клеефанерные панели. Можно принять также различные настилы и сборные ограждения в виде дощатых или фанерных щитов и панелей.

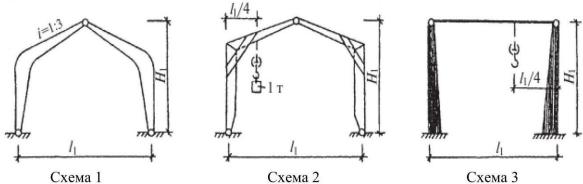


Рисунок 8. Схемы поперечных рам одноэтажного каркасного здания

- 4. В качестве несущих конструкций покрытий для схем 1–3 (рисунок 8) следует применять индустриальные конструкции: клееные и клеефанерные балки и фермы, металлодеревянные и другие типы ферм (по рекомендуемым в литературе схемам).
 - 5. Длину здания следует принять равной 10В (В шаг несущих конструкций).
- 6. Фундаменты, отдельно стоящие, под стойки рамы, следует проектировать из бетона класса В15. Расчетное сопротивление грунта 0,2 МПа.
 - 7. Тип местности для определения ветровых нагрузок В.
- 8. Температурно-влажностные условия эксплуатации конструкций принять самостоятельно согласно таблице 24.

Состав расчетно-графической работы:

В расчетно-графической работе для схем 1–3 студенту предлагается:

- 1) самостоятельно разработать конструктивную схему здания с компоновкой и увязкой размеров конструктивных элементов в плане и на разрезе здания;
- 2) запроектировать схему связей, обеспечивающих устойчивость здания в процессе монтажа и эксплуатации;
 - 3) рассчитать и запроектировать основные конструкции здания:
- покрытие из системы настилов по прогонам или сборных элементов в виде панелей на основании принятых по технико-экономическому сравнению вариантов;

- несущую конструкцию покрытия ригеля в виде фермы или балки; стойку здания и ее крепление к фундаменту. Изложить соображения по изготовлению и монтажу конструкций.

Лист регистрации изменений к РПД

Номер протокола заседания кафедры, дата утверждения изменения	Количество страниц изменения	Подпись разработчика РПД