Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования «Комсомольский-на-Амуре государственный университет»

УТВЕРЖДАЮ	
Декан факультета МХТ ₋	Саблин П.А.
	ФИО декана

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ Компьютерные технологии в нефтегазовой отрасли

Направление подготовки Направленность (профиль)	15.04.02 Технологические машины и оборудование
образовательной программы	Оборудование нефтегазопереработки

Обеспечивающее подразделение	
Кафедра «Машиностроение»	

Разработчик рабочей программы:		
ДОЦЕНТ, КТН, ДОЦЕНТ (должность, степень, ученое звание)	(подпись)	Серебренникова А.Г (ФИО)
(Activations) elements, a lemon spanner	(подписы)	(*110)
СОГЛАСОВАНО:		
Заведующий выпускающей		
кафедрой		
Машиностроения		
(наименование кафедры)		Отряскина Т.А.
	(подпись)	(ФИО)

1 Общие положения

Рабочая программа дисциплины «Компьютерные технологии в нефтегазовой отрасли» составлена в соответствии с требованиями федерального государственного образовательного стандарта, утвержденного приказом Министерства образования и науки Российской Федерации 14.08.2020 № 1026, и основной профессиональной образовательной программы подготовки «Оборудование нефтегазопереработки» по направлению подготовки «15.04.02 Технологические машины и оборудование».

Задачи	Изучение CAD систем для проектирования и моделирования оборудова-
дисциплины	ния нефтегазовой отрасли
	Приобрести практический навык работы в прикладных программах
	Научится применять прикладные программы для решения производ-
	ственных задач
Основные	1 Проектирование в системе CAD: Изучение программы NX CAD, Изу-
разделы / темы	чение программы КОМПАС, Изучение программы AutoCAD, Матема-
дисциплины	тическое моделирование в программе MathCAD,
	2 Моделирование детали в системе CAD: Знакомство с 3D моделирова-
	нием в системой NX, Знакомство с 3D моделированием в системой
	КОМПАС,
	3 Моделирование сборки в системе CAD: Разработка 3D модели сборки

2 Перечень планируемых результатов обучения по дисциплине (модулю), соотнесенных с индикаторами достижения компетенций

Процесс изучения дисциплины «Компьютерные технологии в нефтегазовой отрасли» направлен на формирование следующих компетенций в соответствии с $\Phi \Gamma OC$ ВО и основной образовательной программой:

Код и наименование	Индикаторы достижения	Планируемые результаты обу-
компетенции		чения по дисциплине
	Общепрофессиональные	
ОПК-6 Способен ис-	ОПК-6.1 Знает современные ин-	Знать: информационные си-
пользовать совре-	формационно-	стемы для решения научно-
менные информаци-	коммуникационные технологии	исследовательских задач,
онно-	для решения задач научно-	<i>Уметь:</i> выбирать информаци-
коммуникационные	исследовательской деятельности	онные ресурсы для системати-
технологии, глобаль-	ОПК-6.2 Умеет выбирать ин-	зации и обработки научных
ные информацион-	формационных ресурсов, содер-	данных
ные ресурсы в науч-	жащие релевантную информа-	Владеть: навыками обработки
но-	цию об объекте научно-	информации с помощью б ин-
исследовательской	исследовательской деятельности	формационно-
деятельности	ОПК-6.3 Владеет навыками си-	коммуникационных техноло-
	стематизации, обработки и хра-	гий
	нения информации с помощью	
	баз данных и информационно-	
	коммуникационных технологий	
ОПК-13 Способен	ОПК-13.1 Знает современные	Знать: современные графиче-
разрабатывать и	цифровые программы проекти-	ские программы для проекти-
применять современ-	рования технологических машин	рования оборудования

ные цифровые программы проектирования технологических машин и оборудования, алгоритмы моделирования их работы и испытания их работоспособно-	и оборудования ОПК-13.2 Умеет применять алгоритмы моделирования работы оборудования и испытания их работоспособности ОПК-13.3 Владеет навыками работы в современных цифровых программах проектирования	Уметь: Работать в современные графические программы для проектирования Владеть: навыком работы в современные графические программы для проектирования
*	1	

3 Место дисциплины (модуля) в структуре образовательной программы

Дисциплина входит в состав блока 1 «Дисциплины (модули)» и относится к обязательной части.

Место дисциплины (этап формирования компетенции) отражено в схеме формирования компетенций, представленной в документе *Оценочные материалы*, размещенном на сайте университета www.knastu.ru / Haw университет / Образование / 15.04.02 Технологические машины и оборудование / Оценочные материалы).

Дисциплина «Компьютерные технологии в нефтегазовой отрасли» частично реализуется в форме практической подготовки. Практическая подготовка организуется путем проведения / выполнения практических занятий.

4 Содержание дисциплины (модуля), структурированное по темам (разделам) с указанием отведенного на них количества академических часов и видов учебной работы

4.1 Структура и содержание дисциплины для очной формы обучения

Дисциплина «Компьютерные технологии в нефтегазовой отрасли» изучается на 1 курсе в 1 семестре.

Общая трудоёмкость дисциплины составляет 4 з.е., 144 ч., в том числе контактная работа обучающихся с преподавателем 24 ч., промежуточная аттестация в форме зачета с оценкой, самостоятельная работа обучающихся, 120 ч.

	Виды учебной работы, включая самостоятельную ра			-		
	боту обучающихся и труд			оемкост	ь (в часах)
	Ког	Контактная работа				
Наименование разделов, тем и со-	препода	вателя с об	учающи-			
держание материала	_	мися	•	IMCD	Пром.	CDC
		Практи-	Лабора-	ИКР	аттест.	CPC
	Лекции	ческие	торные			
		занятия	работы			
1 Проектирование в системе						40
CAD						40
1 Изучение программы NX CAD,			2			
КОМПАС или Auto-CAD			2			
2 Математическое моделирование			2			
в программе MathCAD			2			
2 Моделирование детали в си-						40
стеме CAD						40

	Виды учебной работы, включая самостоятельную ра-					
	боту обучающихся и трудоемкость (в часах)					
	Контактная работа					
Наименование разделов, тем и со-	преподавателя с обучающи-					
держание материала		мися		ИКР	Пром.	CPC
		Практи-	Лабора-	YIKI	аттест.	CFC
	Лекции	ческие	торные			
		занятия	работы			
1 Знакомство с 3D моделировани-						
ем в системой NX CAD, KOM-			4			
ПАС или Auto-CAD						
2 Разработка 3D модели детали			8(2*)			
3 Моделирование сборки в си-						40
стеме САД						40
1 Разработка 3D модели сборки			8(2*)			
Зачет с оценкой	-	-	-	-	-	-
ИТОГО			24(4*)			120
по дисциплине	-	-	24(4·)	_	_	120

^{*} реализуется в форме практической подготовки

4.2 Структура и содержание дисциплины для заочной формы обучения

Дисциплина «Компьютерные технологии в нефтегазовой отрасли» изучается на 2 курсе в 3 семестре.

Общая трудоёмкость дисциплины составляет 4 з.е., 144 ч., в том числе контактная работа обучающихся с преподавателем 14 ч., промежуточная аттестация в форме зачета с оценкой, самостоятельная работа обучающихся, 130 ч.

	Виды учебной работы, включая самостоятельну боту обучающихся и трудоемкость (в часах				-	
Наименование разделов, тем и со-	Контактная работа преподавателя с обучающи-					
держание материала	Лекции	мися Практи- ческие занятия	Лабора- торные работы	ИКР	Пром. аттест.	CPC
1 Проектирование в системе CAD			pueerar			40
1 Изучение программы NX CAD, КОМПАС или Auto-CAD			1			
2 Математическое моделирование в программе MathCAD			1			
2 Моделирование детали в си- стеме CAD						45
1 Знакомство с 3D моделировани- ем в системой NX CAD, КОМ- ПАС или Auto-CAD			1			
2 Разработка 3D модели детали			4			
3 Моделирование сборки в си- стеме CAD						45
1 Разработка 3D модели сборки			3			

	Виды учебной работы, включая самостоятельную работу обучающихся и трудоемкость (в часах)					
Наименование разделов, тем и со-	Контактная работа преподавателя с обучающи-					
держание материала		мися		ИКР	Пром.	CPC
		Практи-	Лабора-	ИКР	аттест.	CPC
	Лекции	ческие	торные			
		занятия	работы			
Зачет с оценкой	-	-	-	-	4	-
ИТОГО	-	-	10(2*)		4	130
по дисциплине				-	4	130

^{*} реализуется в форме практической подготовки

5 Оценочные средства для проведения текущего контроля и промежуточной аттестации обучающихся по дисциплине (модулю)

Фонды оценочных средств для проведения текущего контроля успеваемости и промежуточной аттестации обсуждаются и утверждаются на заседании кафедры. Полный комплект контрольных заданий или иных материалов, необходимых для оценивания результатов обучения по дисциплине (модулю) хранится на кафедре-разработчике в бумажном или электронном виде, также фонды оценочных средств доступны студентам в личном кабинете – раздел учебно-методическое обеспечение.

6 Учебно-методическое и информационное обеспечение дисциплины (модуля)

6.1 Основная и дополнительная литература

Перечень рекомендуемой основной и дополнительной литературы представлен на сайте университета www.knastu.ru / Наш университет / Образование / 15.04.02 Технологические машины и оборудование / Рабочий учебный план / Реестр литературы.

6.2 Методические указания для студентов по освоению дисциплины

Указываются учебные издания, содержащие материалы для самостоятельного изучения дисциплины: задания и рекомендации по выполнению контрольных работ, курсовых работ (проектов), тестов, задач, кейсов, научных работ и т.д. Также можно указать перечень собственных материалов, статей, к которым студент имеет возможность доступа через свой личный кабинет

6.3 Современные профессиональные базы данных и информационные справочные системы, используемые при осуществлении образовательного процесса по дисциплине

Каждому обучающимуся обеспечен доступ (удаленный доступ), в том числе в случае применения электронного обучения, дистанционных образовательных технологий, к современным профессиональным базам данных и информационным справочным системам, с которыми у университета заключен договор.

Перечень рекомендуемых профессиональных баз данных и информационных справочных систем представлен на сайте университета www.knastu.ru / Наш университет

/ Образование / 15.04.02 Технологические машины и оборудование / Рабочий учебный план / Реестр ЭБС.

Актуальная информация по заключенным на текущий учебный год договорам приведена на странице Научно-технической библиотеки (НТБ) на сайте университета

https://knastu.ru/page/3244

6.4 Перечень ресурсов информационно-телекоммуникационной сети «Интернет», необходимых для освоения дисциплины (модуля)

На странице НТБ можно воспользоваться интернет-ресурсами открытого доступа по укрупненной группе направлений и специальностей (УГНС) 15.00.00 Машиностроение:

https://knastu.ru/page/539

7 Организационно-педагогические условия

Организация образовательного процесса регламентируется учебным планом и расписанием учебных занятий. Язык обучения (преподавания) - русский. Для всех видов аудиторных занятий академический час устанавливается продолжительностью 45 минут.

При формировании своей индивидуальной образовательной траектории обучающийся имеет право на перезачет соответствующих дисциплин и профессиональных модулей, освоенных в процессе предшествующего обучения, который освобождает обучающегося от необходимости их повторного освоения.

7.1 Образовательные технологии

Учебный процесс при преподавании курса основывается на использовании традиционных, инновационных и информационных образовательных технологий. Традиционные образовательные технологии представлены лекциями и семинарскими (практическими) занятиями. Инновационные образовательные технологии используются в виде широкого применения активных и интерактивных форм проведения занятий. Информационные образовательные технологии реализуются путем активизации самостоятельной работы студентов в информационной образовательной среде.

7.2 Занятия семинарского типа

Семинарские занятия представляют собой детализацию лекционного теоретического материала, проводятся в целях закрепления курса и охватывают все основные разделы.

Основной формой проведения семинаров является обсуждение наиболее проблемных и сложных вопросов по отдельным темам, а также разбор примеров и ситуаций в аудиторных условиях. В обязанности преподавателя входят: оказание методической помощи и консультирование студентов по соответствующим темам курса.

Активность на семинарских занятиях оценивается по следующим критериям:

- ответы на вопросы, предлагаемые преподавателем;
- участие в дискуссиях;
- выполнение проектных и иных заданий;
- ассистирование преподавателю в проведении занятий.

Ответ должен быть аргументированным, развернутым, не односложным, содержать ссылки на источники.

Доклады и оппонирование докладов проверяют степень владения теоретическим материалом, а также корректность и строгость рассуждений.

Оценивание заданий, выполненных на семинарском занятии, входит в накопленную оценку.

7.3 Самостоятельная работа обучающихся по дисциплине (модулю)

Самостоятельная работа студентов — это процесс активного, целенаправленного приобретения студентом новых знаний, умений без непосредственного участия преподавателя, характеризующийся предметной направленностью, эффективным контролем и оценкой результатов деятельности обучающегося.

Цели самостоятельной работы:

- · систематизация и закрепление полученных теоретических знаний и практических умений студентов;
 - углубление и расширение теоретических знаний;
- · формирование умений использовать нормативную и справочную документацию, специальную литературу;
- развитие познавательных способностей, активности студентов, ответственности и организованности;
- формирование самостоятельности мышления, творческой инициативы, способностей к саморазвитию, самосовершенствованию и самореализации;
 - развитие исследовательских умений и академических навыков.

Самостоятельная работа может осуществляться индивидуально или группами студентов в зависимости от цели, объема, уровня сложности, конкретной тематики.

Технология организации самостоятельной работы студентов включает использование информационных и материально-технических ресурсов университета.

Контроль результатов внеаудиторной самостоятельной работы студентов может проходить в письменной, устной или смешанной форме.

Студенты должны подходить к самостоятельной работе как к наиважнейшему средству закрепления и развития теоретических знаний, выработке единства взглядов на отдельные вопросы курса, приобретения определенных навыков и использования профессиональной литературы.

7.4 Методические рекомендации для обучающихся по освоению дисциплины

При изучении дисциплины обучающимся целесообразно выполнять следующие рекомендации:

- 1. Изучение учебной дисциплины должно вестись систематически.
- 2. После изучения какого-либо раздела по учебнику или конспектным материалам рекомендуется по памяти воспроизвести основные термины, определения, понятия раздела.
- 3. Особое внимание следует уделить выполнению отчетов по практическим занятиям и индивидуальным комплексным заданиям на самостоятельную работу.
- 4. Вся тематика вопросов, изучаемых самостоятельно, задается на лекциях преподавателем. Им же даются источники (в первую очередь вновь изданные в периодической научной литературе) для более детального понимания вопросов, озвученных на лекции.

При самостоятельной проработке курса обучающиеся должны:

- просматривать основные определения и факты;
- · повторить законспектированный на лекционном занятии материал и дополнить его с учетом рекомендованной по данной теме литературы;
- · изучить рекомендованную литературу, составлять тезисы, аннотации и конспекты наиболее важных моментов;
 - самостоятельно выполнять задания, аналогичные предлагаемым на занятиях;
 - использовать для самопроверки материалы фонда оценочных средств.

- 8 Материально-техническое обеспечение, необходимое для осуществления образовательного процесса по дисциплине (модулю)
- 8.1 Лицензионное и свободно распространяемое программное обеспечение, используемое при осуществлении образовательного процесса по дисциплине

Университет обеспечен необходимым комплектом лицензионного и свободно распространяемого программного обеспечения, в том числе отечественного производства. Состав программного обеспечения, необходимого для освоения дисциплины, приведен на сайте университета www.knastu.ru / Haш университет / Образование / 15.04.02 Технологические машины и оборудование / Рабочий учебный план / Реестр ПО.

Актуальные на текущий учебный год реквизиты / условия использования программного обеспечения приведены на странице ИТ-управления на сайте университета:

https://knastu.ru/page/1928

8.2 Учебно-лабораторное оборудование

Наименование аудитории (лаборатории)	Используемое оборудование
Вычислительный центр	14 персональных ЭВМ;

8.3 Технические и электронные средства обучения

Лабораторные занятия.

Для лабораторных занятий используется аудитория, оснащенная оборудованием, указанным в табл. п. 8.2.

Самостоятельная работа.

Помещения для самостоятельной работы оснащены компьютерной техникой с возможностью подключения к сети «Интернет» и доступом к электронной информационнообразовательной среде КнАГУ:

- зал электронной информации НТБ КнАГУ;
- компьютерные классы факультета.

9 Иные сведения

Методические рекомендации по обучению лиц с ограниченными возможностями здоровья и инвалидов

Освоение дисциплины обучающимися с ограниченными возможностями здоровья может быть организовано как совместно с другими обучающимися, так и в отдельных группах. Предполагаются специальные условия для получения образования обучающимися с ограниченными возможностями здоровья.

Профессорско-педагогический состав знакомится с психолого-физиологическими особенностями обучающихся инвалидов и лиц с ограниченными возможностями здоровья, индивидуальными программами реабилитации инвалидов (при наличии). При необходимости осуществляется дополнительная поддержка преподавания тьюторами, психологами, социальными работниками, прошедшими подготовку ассистентами.

В соответствии с методическими рекомендациями Минобрнауки РФ (утв. 8 апреля 2014 г. N АК-44/05вн) в курсе предполагается использовать социально-активные и рефлексивные методы обучения, технологии социокультурной реабилитации с целью оказания помощи в установлении полноценных межличностных отношений с другими студентами, создании комфортного психологического климата в студенческой группе. Подбор и разработка учебных материалов производятся с учетом предоставления материала в различных формах: аудиальной, визуальной, с использованием специальных технических средств и информационных систем.

Освоение дисциплины лицами с OB3 осуществляется с использованием средств обучения общего и специального назначения (персонального и коллективного использования). Материально-техническое обеспечение предусматривает приспособление аудиторий к нуждам лиц с OB3.

Форма проведения аттестации для студентов-инвалидов устанавливается с учетом индивидуальных психофизических особенностей. Для студентов с ОВЗ предусматривается доступная форма предоставления заданий оценочных средств, а именно:

- · в печатной или электронной форме (для лиц с нарушениями опорнодвигательного аппарата);
- · в печатной форме или электронной форме с увеличенным шрифтом и контрастностью (для лиц с нарушениями слуха, речи, зрения);
 - методом чтения ассистентом задания вслух (для лиц с нарушениями зрения).

Студентам с инвалидностью увеличивается время на подготовку ответов на контрольные вопросы. Для таких студентов предусматривается доступная форма предоставления ответов на задания, а именно:

- · письменно на бумаге или набором ответов на компьютере (для лиц с нарушениями слуха, речи);
- выбором ответа из возможных вариантов с использованием услуг ассистента (для лиц с нарушениями опорно-двигательного аппарата);
 - устно (для лиц с нарушениями зрения, опорно-двигательного аппарата).

При необходимости для обучающихся с инвалидностью процедура оценивания результатов обучения может проводиться в несколько этапов.