Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования «Комсомольский-на-Амуре государственный университет»

УТВЕРЖДАЮ

Декан факультета

А.С. Гудим

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

«Импульсные устройства»

Направление подготовки	11.03.04 Электроника и наноэлектроника
Направленность (профиль)	Проектирование электронных устройств
образовательной программы	

Обеспечивающее подразделение	
Кафедра «ПЭИТ»	

Разработчик рабочей программы:	
Доцент кафедры, кандидат техни-	
ческих наук, доцент	Н.Н. Любушкина
(должность, степень, ученое звание)	(ФИО)
СОГЛАСОВАНО:	
Заведующий кафедрой	
<u>ПЭИТ</u> (наименование кафедры)	М.А. Горькавый
((ФИО)

1 Введение

Рабочая программа и фонд оценочных средств дисциплины «Импульсные устройства» составлены в соответствии с требованиями федерального государственного образовательного стандарта, утвержденного приказом Минобрнауки Российской Федерации 927 от 19 сентября 2017 г., и основной профессиональной образовательной программы подготовки «Проектирование электронных устройств» по направлению подготовки «11.03.04 Электроника и наноэлектроника».

Задачи дисциплины	Знать принципы построения современных импульсных электронных устройств. Знать методы расчета импульсных электронных устройств. Уметь выполнять экспериментальные исследования импульсных электронных устройств. Уметь выполнять расчет и проектирование импульсных электронных устройств. Владеть навыками исследования импульсных электронных устройств. Владеть навыками расчета импульсных электронных устройств.	
Основные разделы / темы дисциплины	 Сигналы импульсных и цифровых устройств; Импульсные усилители и ключи; Формирователи импульсов; Генераторы прямоугольных импульсов; Генераторы пилообразных импульсов. 	

2 Перечень планируемых результатов обучения по дисциплине (модулю), соотнесенных с индикаторами достижения компетенций

Процесс изучения дисциплины «Импульсные устройства» направлен на формирование следующих компетенций в соответствии с ФГОС ВО и основной образовательной программой (таблица 1):

Таблица 1 – Компетенции и индикаторы их достижения

Код и наименование компетен- ции	Индикаторы достижения	Планируемые результаты обучения по дисциплине
	Профессиональные	
ПК-1 Способен выполнять расчет и проектирование электронных приборов, схем и устройств различного функционального назначения	ПК-1.1 Знает принципы конструирования отдельных аналоговых блоков электронных приборов ПК-1.2 Умеет проводить оценочные расчеты характеристик электронных приборов ПК-1.3 Владеет навыками подготовки принципиальных и монтажных электрических схем	Знать принципы построения современных импульсных устройств. Уметь выполнять экспериментальные исследования импульсных электронных устройств Владеть навыками расчета импульсных электронных устройств

3 Место дисциплины (модуля) в структуре образовательной программы

Дисциплина входит в состав блока 1 «Дисциплины (модули)» и относится к части, формируемой участниками образовательных отношений.

Место дисциплины (этап формирования компетенции) отражено в схеме формирования компетенций, представленной в документе *Оценочные материалы*, размещенном на сайте университета www.knastu.ru / Haw университет / Образование / 11.03.04 Электроника и наноэлектроника /Оценочные материалы).

Дисциплина «Импульсные устройства» частично реализуется в форме практической подготовки. Практическая подготовка организуется путем проведения / выполнения практических занятий, лабораторных работ, выполнения курсовых проектов, иных видов учебной деятельности.

Практическая подготовка реализуется на основе:

Профессиональный стандарт 29.007 «СПЕЦИАЛИСТ ПО ПРОЕКТИРОВАНИЮ МИКРО- И НАНОРАЗМЕРНЫХЭЛЕКТРОМЕХАНИЧЕСКИХ СИСТЕМ», Обобщенная трудовая функция: А. Разработка принципиальной электрической схемы микроэлектромеханической системы.

4 Содержание дисциплины (модуля), структурированное по темам (разделам) с указанием отведенного на них количества академических часов и видов учебной работы

4.1 Структура и содержание дисциплины для очной формы обучения

Дисциплина изучается на 3 курсе(ах) в 6 семестре.

Общая трудоёмкость дисциплины составляет 5 з.е., 180 ч., в том числе контактная работа обучающихся с преподавателем 49 ч., промежуточная аттестация в форме экзамена, самостоятельная работа обучающихся 96 ч.

на, самостоятельная работа боучающихся 90 ч.				
Наименование разделов, тем и содер- жание материала	Виды учебной работы, включая самостоятельную работу обучающихся и трудоемкость (в часах)			
	Контактная работа преподавателя с обучающимися			
	Лекции	Семинарские (практические занятия)	Лабораторные занятия	
Раздел 1 СИГНАЛЫ ИМПУЛЬСНЫХ И ЦИФРОВЫХ УСТРОЙСТВ				
Тема 1.1 Сигналы импульсных устройств	4			
Тема 1.2 Сигналы цифровых устройств	4			
Подготовка к занятиям семинарского типа, изучение теоретических разделов курса, выполнение проверочной работы				20
Раздел 2 ИМПУЛЬСНЫЕ УСИЛИТЕ- ЛИ И КЛЮЧИ				

Тема 2.1 Некоректированый транзи- сторный усилитель	4		
Тема 2.2 Коррекция в транзисторных усилителях	2		
Тема 2.3 Статические и динамические характеристики транзисторных ключей	2		
Транзисторные ключи		4	
Подготовка к занятиям семинарского типа, изучение теоретических разделов курса, выполнение проверочной работы			20
Раздел 3 ФОРМИРОВАТЕЛИ ИМ- ПУЛЬСОВ			
Тема 3.1 Дифференцирующие цепи	2		
Тема 3.2 Интегрирующие цепи	2		
Тема 3.3 Ограничители	2		
Раздел 4 ГЕНЕРАТОРЫ ПРЯМО- УГОЛЬНЫХ ИМПУЛЬСОВ			
Подготовка к занятиям семинарского типа, изучение теоретических разделов курса, выполнение проверочной работы			20
Тема 4.1 Транзисторные мультивибраторы	2		
Тема 4.2 Интегральные мультивибраторы	2		
Тема 4.2 Мультивибраторы на ОУ	2		
Транзисторный мультивибратор		2	
Ждущий мультивибратор на ОУ		2	
RC-генератор на ОУ		2	
Генераторы прямоугольных импульсов		2	
Подготовка к занятиям семинарского типа, изучение теоретических разделов курса, выполнение проверочной работы			20

Раздел 5 ГЕНЕРАТОРЫ ПИЛООБ- РАЗНЫХ ИМПУЛЬСОВ			
Тема 5.1 Генераторы линейно изменяющегося напряжения	4		
Тема 5.2 Генераторы линейно изменяющегося тока	2		
Генераторы пилообразных импульсов		4	
Подготовка к занятиям семинарского типа, изучение теоретических разделов курса, выполнение проверочной работы			16
ИТОГО по дисциплине	32	16	96

^{*} реализуется в форме практической подготовки

5 Оценочные средства для проведения текущего контроля и промежуточной аттестации обучающихся по дисциплине (модулю)

Фонды оценочных средств для проведения текущего контроля успеваемости и промежуточной аттестации обсуждаются и утверждаются на заседании кафедры. Полный комплект контрольных заданий или иных материалов, необходимых для оценивания результатов обучения по дисциплине (модулю) хранится на кафедре-разработчике в бумажном или электронном виде, также фонды оценочных средств доступны студентам в личном кабинете – раздел учебно-методическое обеспечение.

6 Учебно-методическое и информационное обеспечение дисциплины (модуля)

6.1 Основная и дополнительная литература

Перечень рекомендуемой основной и дополнительной литературы представлен на сайте университета www.knastu.ru / Наш университет / Образование / 11.03.04 Электроника и наноэлектроника / Рабочий учебный план / Реестр литературы.

6.2 Методические указания для студентов по освоению дисциплины

Приведены в разделе учебно-методические комплексы дисциплин

6.3 Современные профессиональные базы данных и информационные справочные системы, используемые при осуществлении образовательного процесса по дисциплине

Каждому обучающимуся обеспечен доступ (удаленный доступ), в том числе в случае применения электронного обучения, дистанционных образовательных технологий, к современным профессиональным базам данных и информационным справочным системам, с которыми у университета заключен договор.

Перечень рекомендуемых профессиональных баз данных и информационных справочных систем представлен на сайте университета www.knastu.ru / Наш университет

/ Образование / 11.03.04 Электроника и наноэлектроника / Рабочий учебный план / Реестр ЭБС.

Актуальная информация по заключенным на текущий учебный год договорам приведена на странице Научно-технической библиотеки (НТБ) на сайте университета

https://knastu.ru/page/3244

6.4 Перечень ресурсов информационно-телекоммуникационной сети «Интернет», необходимых для освоения дисциплины (модуля)

На странице НТБ можно воспользоваться интернет-ресурсами открытого доступа по укрупненной группе направлений и специальностей (УГНС) 11.03.04 Электроника и наноэлектроника:

https://knastu.ru/page/539

7 Организационно-педагогические условия

Организация образовательного процесса регламентируется учебным планом и расписанием учебных занятий. Язык обучения (преподавания) - русский. Для всех видов аудиторных занятий академический час устанавливается продолжительностью 45 минут.

При формировании своей индивидуальной образовательной траектории обучающийся имеет право на перезачет соответствующих дисциплин и профессиональных модулей, освоенных в процессе предшествующего обучения, который освобождает обучающегося от необходимости их повторного освоения.

7.1 Образовательные технологии

Учебный процесс при преподавании курса основывается на использовании традиционных, инновационных и информационных образовательных технологий. Традиционные образовательные технологии представлены лекциями и семинарскими (практическими) занятиями. Инновационные образовательные технологии используются в виде широкого применения активных и интерактивных форм проведения занятий. Информационные образовательные технологии реализуются путем активизации самостоятельной работы студентов в информационной образовательной среде.

7.2 Занятия лекционного типа

Лекционный курс предполагает систематизированное изложение основных вопросов учебного плана.

На первой лекции лектор обязан предупредить студентов, применительно к какому базовому учебнику (учебникам, учебным пособиям) будет прочитан курс.

Лекционный курс должен давать наибольший объем информации и обеспечивать более глубокое понимание учебных вопросов при значительно меньшей затрате времени, чем это требуется большинству студентов на самостоятельное изучение материала.

7.3 Занятия семинарского типа

Семинарские занятия представляют собой детализацию лекционного теоретического материала, проводятся в целях закрепления курса и охватывают все основные разделы.

Основной формой проведения семинаров является обсуждение наиболее проблемных и сложных вопросов по отдельным темам, а также разбор примеров и ситуаций в

аудиторных условиях. В обязанности преподавателя входят: оказание методической помощи и консультирование студентов по соответствующим темам курса.

Активность на семинарских занятиях оценивается по следующим критериям:

- ответы на вопросы, предлагаемые преподавателем;
- участие в дискуссиях;
- выполнение проектных и иных заданий;
- ассистирование преподавателю в проведении занятий.

Ответ должен быть аргументированным, развернутым, не односложным, содержать ссылки на источники.

Доклады и оппонирование докладов проверяют степень владения теоретическим материалом, а также корректность и строгость рассуждений.

Оценивание заданий, выполненных на семинарском занятии, входит в накопленную оценку.

7.4 Самостоятельная работа обучающихся по дисциплине (модулю)

Самостоятельная работа студентов — это процесс активного, целенаправленного приобретения студентом новых знаний, умений без непосредственного участия преподавателя, характеризующийся предметной направленностью, эффективным контролем и оценкой результатов деятельности обучающегося.

Цели самостоятельной работы:

- систематизация и закрепление полученных теоретических знаний и практических умений студентов;
 - углубление и расширение теоретических знаний;
- · формирование умений использовать нормативную и справочную документацию, специальную литературу;
- развитие познавательных способностей, активности студентов, ответственности и организованности;
- формирование самостоятельности мышления, творческой инициативы, способностей к саморазвитию, самосовершенствованию и самореализации;
 - развитие исследовательских умений и академических навыков.

Самостоятельная работа может осуществляться индивидуально или группами студентов в зависимости от цели, объема, уровня сложности, конкретной тематики.

Технология организации самостоятельной работы студентов включает использование информационных и материально-технических ресурсов университета.

Контроль результатов внеаудиторной самостоятельной работы студентов может проходить в письменной, устной или смешанной форме.

Студенты должны подходить к самостоятельной работе как к наиважнейшему средству закрепления и развития теоретических знаний, выработке единства взглядов на отдельные вопросы курса, приобретения определенных навыков и использования профессиональной литературы.

7.5 Методические рекомендации для обучающихся по освоению дисциплины

При изучении дисциплины обучающимся целесообразно выполнять следующие рекомендации:

- 1. Изучение учебной дисциплины должно вестись систематически.
- 2. После изучения какого-либо раздела по учебнику или конспектным материалам рекомендуется по памяти воспроизвести основные термины, определения, понятия раздела.
- 3. Особое внимание следует уделить выполнению отчетов по практическим занятиям и индивидуальным комплексным заданиям на самостоятельную работу.

4. Вся тематика вопросов, изучаемых самостоятельно, задается на лекциях преподавателем. Им же даются источники (в первую очередь вновь изданные в периодической научной литературе) для более детального понимания вопросов, озвученных на лекции.

При самостоятельной проработке курса обучающиеся должны:

- просматривать основные определения и факты;
- · повторить законспектированный на лекционном занятии материал и дополнить его с учетом рекомендованной по данной теме литературы;
- изучить рекомендованную литературу, составлять тезисы, аннотации и конспекты наиболее важных моментов:
 - самостоятельно выполнять задания, аналогичные предлагаемым на занятиях;
 - использовать для самопроверки материалы фонда оценочных средств.

8 Материально-техническое обеспечение, необходимое для осуществления образовательного процесса по дисциплине (модулю)

8.1 Лицензионное и свободно распространяемое программное обеспечение, используемое при осуществлении образовательного процесса по дисциплине

Университет обеспечен необходимым комплектом лицензионного и свободно распространяемого программного обеспечения, в том числе отечественного производства. Состав программного обеспечения, необходимого для освоения дисциплины, приведен на сайте университета www.knastu.ru / Наш университет / Образование / 11.03.04 Электроника и наноэлектроника / Рабочий учебный план / Реестр ПО.

Актуальные на текущий учебный год реквизиты / условия использования программного обеспечения приведены на странице ИТ-управления на сайте университета:

https://knastu.ru/page/1928

8.2 Учебно-лабораторное оборудование

Аудитория	Наименование аудитории (лаборатории)	Используемое оборудование
211/3	Лаборатория компьютерного проектирования и моде-	Персональные компьютеры Intel Core i3-4330 3,5 ГГц, ОЗУ 4 ГБ
	лирования	

При реализации дисциплины на базе профильной организации используется материально-техническое обеспечение, указанное в договорах о практической подготовке или договорах о сетевом взаимодействии.

8.3 Технические и электронные средства обучения

Лекционные занятия.

Аудитории для лекционных занятий укомплектованы мебелью и техническими средствами обучения, служащими для представления учебной информации большой аудитории (наборы демонстрационного оборудования (проектор, экран, компьютер/ноутбук), учебно-наглядные пособия, тематические иллюстрации).

Для реализации дисциплины подготовлен электронный образовательный ресурс https://learn.knastu.ru/students/about_course/792

Практические занятия (при наличии).

Аудитории для практических занятий укомплектованы специализированной мебелью и техническими средствами обучения (проектор, экран, компьютер/ноутбук).

Лабораторные занятия (при наличии).

Для лабораторных занятий используется аудитория, оснащенная оборудованием, указанным в табл. п. 8.2.

Самостоятельная работа.

Помещения для самостоятельной работы оснащены компьютерной техникой с возможностью подключения к сети «Интернет» и доступом к электронной информационнообразовательной среде КнАГУ:

- зал электронной информации НТБ КнАГУ;
- компьютерные классы факультета.

9 Иные сведения

Методические рекомендации по обучению лиц с ограниченными возможностями здоровья и инвалидов

Освоение дисциплины обучающимися с ограниченными возможностями здоровья может быть организовано как совместно с другими обучающимися, так и в отдельных группах. Предполагаются специальные условия для получения образования обучающимися с ограниченными возможностями здоровья.

Профессорско-педагогический состав знакомится с психолого-физиологическими особенностями обучающихся инвалидов и лиц с ограниченными возможностями здоровья, индивидуальными программами реабилитации инвалидов (при наличии). При необходимости осуществляется дополнительная поддержка преподавания тьюторами, психологами, социальными работниками, прошедшими подготовку ассистентами.

В соответствии с методическими рекомендациями Минобрнауки РФ (утв. 8 апреля 2014 г. N АК-44/05вн) в курсе предполагается использовать социально-активные и рефлексивные методы обучения, технологии социокультурной реабилитации с целью оказания помощи в установлении полноценных межличностных отношений с другими студентами, создании комфортного психологического климата в студенческой группе. Подбор и разработка учебных материалов производятся с учетом предоставления материала в различных формах: аудиальной, визуальной, с использованием специальных технических средств и информационных систем.

Освоение дисциплины лицами с OB3 осуществляется с использованием средств обучения общего и специального назначения (персонального и коллективного использования). Материально-техническое обеспечение предусматривает приспособление аудиторий к нуждам лиц с OB3.

Форма проведения аттестации для студентов-инвалидов устанавливается с учетом индивидуальных психофизических особенностей. Для студентов с ОВЗ предусматривается доступная форма предоставления заданий оценочных средств, а именно:

- · в печатной или электронной форме (для лиц с нарушениями опорнодвигательного аппарата);
- в печатной форме или электронной форме с увеличенным шрифтом и контрастностью (для лиц с нарушениями слуха, речи, зрения);
 - методом чтения ассистентом задания вслух (для лиц с нарушениями зрения).

Студентам с инвалидностью увеличивается время на подготовку ответов на контрольные вопросы. Для таких студентов предусматривается доступная форма предоставления ответов на задания, а именно:

· письменно на бумаге или набором ответов на компьютере (для лиц с нарушениями слуха, речи);

- · выбором ответа из возможных вариантов с использованием услуг ассистента (для лиц с нарушениями опорно-двигательного аппарата);
 - устно (для лиц с нарушениями зрения, опорно-двигательного аппарата).

При необходимости для обучающихся с инвалидностью процедура оценивания результатов обучения может проводиться в несколько этапов.